Strategies for Solving Large, Complex, Unstructured Problems

Leadership Meeting
Lima, Peru
July 16th, 2018

Roger W. Hoerl, Union College
Schenectady, NY
USA
The challenge of large, complex, unstructured problems
A financial case study
The statistical engineering approach
The fundamental principles of statistical engineering
Summary
The vast majority of textbook problems have a single, correct answer.

In the words of Meng (2009), they “correspond to a recognizable textbook chapter”.

However, many real problems students eventually face are too large, complex, and unstructured to have a “correct” solution.

Khatchatryan (2015): We should “…enable students to engage in collaborative teamwork to solve nonstandard and ill-defined problems. As in the real world, no cookie-cutter approach is sufficient when tackling the business problems inherent in the proposed case studies, as those involve messy data and many blended, intertwined, and moving parts”.

Are we students prepared for the “real world”?
Typical Attributes of Such Problems

- Large payoff and business critical problems
- Impact is broad – process performance, financial, customer, social, etc.
- Several departments, groups and functions are involved
- Problem has high degree of complexity involving both technical and non-technical challenges
 - Problem not clearly defined/structured
 - There is no known solution
 - Potential team conflict on how to approach
- Multiple sources of data and information are needed

How should practitioners attack such problems?
Typical Attributes of Such Problems

More than one technique is required for solution
 Typically both statistical and non-statistical techniques are also required
Creative use of information technology (IT) is needed
Long-term successes requires embedding solution into work processes, typically through:
 Use of custom software
 Integration with other sciences and disciplines

What literature exists to guide practitioners?
Stat 399: Problem Solving in Statistics

“…emphasizes deep, broad, and creative statistical thinking instead of technical problems that correspond to a recognizable textbook chapter.”*

*Xiao-Li Meng, American Statistician, August 2009

Do large, complex, unstructured problems “correspond to a recognizable textbook chapter?”
What approaches should be used to attack large, complex, unstructured problems?

By what theory or body of research should we answer this question?

How would we know if we were right or not?

Should this be a discipline in its own right?
A Personal Case Study

Problem: GE Capital announced losses of over $125 million on WorldCom bonds that went into default.

Their question to GE Global Research: “Is this just the cost of doing business in the financial sector, or could we have predicted these losses with enough lead time to lower our exposures?”

Classic problem in finance - unsolved
Challenges included

- Financial theory ("efficient market hypothesis") says you can’t predict defaults ahead of the market
- GE Capital needed to trade in large quantities
- No commonly accepted definition of “default”
- Limited internal data – no set of “universal data”
- No defined measure of success

Does this sound like a typical textbook problem?
A Personal Case Study

Approach Taken:

- Cross-functional team organized
 - Statistics, operations research, machine learning, quantitative finance, business expertise
 - Spread between upstate New York, Bangalore (India), and Stamford (Connecticut)
- Developed definition of default, and metrics to document success and failure (step zero)
- Typical for unstructured problems

No “template” to follow
A Personal Case Study

Data obtained externally – needed to merge different data sources
Eventually set up direct data feed from Wall Street

Final prediction methodology utilized:
Publicly available default predictor as an input
 Engineering vs. pure science approach
Smoothing algorithms, classification and regression trees (CART), simulation, and Markov Chains

Developed “control plan” to detect need for retuning the algorithm: used censored data methods from reliability

Does this look like a typical textbook solution?
"CREDIT ALERT"

PROPRIETARY PREDICTIVE TOOL

New Tool!
- Evaluated 5 Yrs Credit Trends – 3,500+ Companies
- Statistically Derived Indicators Of Credit Deterioration
- Validated Against Our Own Portfolio History
- Applicable Across All Commercial Portfolios

Up To 12 Months "Early Read" – Very Promising!
A Personal Case Study

Results:

- GE Capital performed a simulation study of the final prediction system – without our involvement
 - Evaluated their potential financial results had they used this system in the past year for all trading
 - Results were positive in the hundreds of millions of dollars

- This system was subsequently incorporated into underwriting procedures for large financial deals
 - “Embedding” statistical methods into business processes

- The team received a patent for the system – not for the algorithm (US20030229556A1)

Solving large, complex, unstructured problems produces impact
The Statistical Engineering Approach

How was this problem attacked? Answer: using what we now call statistical engineering

Definition:

The discipline of statistical engineering is the study of the systematic integration of statistical concepts, methods, and tools, often with other relevant disciplines, to solve important problems sustainably.

In other words, trying to build something meaningful from the statistical science “parts list” of tools

Focus is on solving problems versus tools, per se

Real problems, particularly big problems, require integration of multiple methods

See special edition of Quality Engineering (2012) on statistical engineering for more background and case studies

Statistical engineering is not a “method”, per se
Key Aspects of Definition

“the study of”
- Research oriented
- Statistical engineering has a theory

“solve important problems sustainably”
- Results are the “what”, methods and tools are “hows”
- Statistical engineering is therefore tool-agnostic
- Solution must be sustainable over time

“often with other relevant disciplines”
- Integration of multiple tools, methods, and even disciplines
- Information technology usually has a major role to play

SE studies how to select and integrate methods in order to solve real problems
Scientists, engineers, statisticians and other professionals have been building meaningful new things from the statistical science parts list of tools for some time, to address large, complex, unstructured problems. However:

- This has typically been done on an ad-hoc basis with little or no underlying theory documented to provide guidance to others.
- Applications have generally been “one offs”, requiring the “wheel to be reinvented” each time.
- This has significantly slowed progress, and led to missed opportunities for impact.

Statistical engineering is an old idea, but perhaps a new discipline
Fundamental Principles of Statistical Engineering
Typical Phases of Statistical Engineering Projects

1. **Identify Problems**: find the high-impact issues critical to achieving the organization’s strategic goals

2. **Create Structure**: carefully define the problem, objectives, constraints, metrics for success, and so on.

3. **Understand the Context**: identify important stakeholders (e.g., customers, organizations, individuals, management), research the history of the issue, identify unstated complications, such as cultural or political issues, locate relevant data sources.

4. **Develop a Strategy**: create an overall, high level approach to attacking the problem, based on phases 2 and 3.

5. **Develop and Execute Tactics**: develop and implement diverse initiatives or projects that collectively will accomplish the strategy.

6. **Deploy Final Solution**: deploy solution to ensure that it actually works, and then maintain the solution over time.

There are no “seven easy steps” to statistical engineering projects
Flow of Statistical Engineering Projects

Note:
- This is typically NOT a linear process; significant cycling back to previous phases is common
- Each phase needs to be tailored, depending on the problem structure and context. That is, this is NOT “7 easy steps to solving problems”
- Often several projects are required to solve large, complex, unstructured problems
Core Principles of Statistical Engineering

- Understanding of the problem context
- Development of a problem-solving strategy
- Consideration of the “data pedigree”
- Integration of subject matter theory (domain knowledge)
- Use of sequential approaches

These are not always needed for straightforward problems, but they are for large, complex, unstructured problems.
What specifically is the problem we are trying to solve?

How did we get where we are today? What are the root causes?

What has been attempted previously? Why didn’t it work?

Clear problem definition and scope are critical to success

Objective is typically a “useful model”, not “optimal” model

- Best technical or business solution versus best statistical solution

The data are not the problem
Integration of statistical and non-statistical tools increases impact
Complex problems can rarely be solved with one method
Tools-oriented approached typically produce poor results
 “Hammer and nail” analogy
Debating which tool is “best” is a distraction
Proactive use of information technology often helps
Embedding statistical solutions into routine work processes institutionalizes their use and impact
 Typically through information technology

Large, complex problems require a strategy
All data are **not** created equal – sounds obvious, but isn’t!
Have the data been modified, filtered, “cleaned”, or altered in any way, since collected?
Does a “gold standard” copy of the original data exist?
Models should never be more complex than can be supported by the available data
We must understand the process that produced the data to properly analyze them
Documentation of statistical analyses should include limitations, including restrictions on application of the analyses

Data are “guilty until proven innocent”
Proper statistical analyses of data requires subject matter knowledge.

Such knowledge must guide data collection, and also interpret (make sense of) statistical analyses.

Statistics becomes ineffective when divorced from subject matter knowledge.

The only reason for statistics to exist as a discipline to enhance other disciplines (chemistry, engineering, psychology, economics, etc.)

Almost all pioneers in statisticians were trained in science or engineering.
Sequential Approaches

Statistical applications should be viewed as part of the ongoing application of the scientific method, not “one shot studies”

Guiding future studies is often the most beneficial aspect of analysis of existing data

For example, the phases of clinical trials in developing pharmaceuticals

A sequential approach allows for development of new theory and knowledge, not just testing existing hypotheses

Linking and sequencing tools in novel, logical ways enhances effectiveness, learning, and impact

The scientific method is not built on “one-shot studies”
Textbook problems do not prepare people for the large, complex, unstructured problems they will face in the real world

A different approach is needed

An engineering paradigm seems to work for these large, complex, unstructured problems

Statistical engineering provides a framework that can accelerate the learning curve in attacking such problems

Statistical engineering is being developed and documented as a discipline, i.e., it is a “work in progress”

Including a well-developed theory underlying it

Significant implications for statistical practice, education, and research
CICEA III at UPEP, Lima Campus

For those interested in exploring these issues further, the third Conferencia International de Calidad y Estadistica Aplicada will be held at the Lima campus of the Universidad de Piura, starting tomorrow (17th), through Thursday (19th).

Professor Geoff Vining and I will both be speaking multiple times at the conference.

Topics include:
- Statistical engineering
- Quality improvement
- Analysis of large data sets
- Six Sigma
- Problem solving
- ……

See: http://udep.edu.pe/ingenieria/cicea/