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Preface 
 

 
 
 
 
 

educing the variation in process outputs is a key part of process improvement. If you 
have picked up this book, you probably do not need to be convinced of the truth of 
this statement. For mass-produced components and assemblies, reducing variation 

can simultaneously reduce overall cost, improve function, and increase customer satisfac- 
tion with the product. Excess variation can have dire consequences, leading to scrap and 
rework, the need for added inspection, customer returns, impairment of function, and a 
reduction in reliability and durability. 

We have structured the book around an algorithm for reducing process variation that we 
call Statistical Engineering. The algorithm is designed to solve chronic problems on exist- 
ing high- to medium-volume manufacturing and assembly processes. The algorithm will not 
apply to urgent, short-term sporadic problems such as what to do when a defective item is 
found. Instead, we look at the problem of reducing the frequency of such defective items. 

The fundamental basis for the algorithm is the belief that we will discover cost-effective 
changes to the process that will reduce variation if we increase our knowledge of how and 
why a process behaves as it does. A key way to increase process knowledge is to learn 
empirically—that is, to learn by observation and experimentation. We discuss in detail a 
framework for planning and analyzing empirical investigations, known by its acronym 
QPDAC (Question, Plan, Data, Analysis, Conclusion). We use the QPDAC framework at 
many stages of the Statistical Engineering algorithm to help plan, analyze, and interpret the 
results of appropriate investigations. 

Using the algorithm, you are guided through a series of empirical investigations to a cost- 
effective solution to the problem. The purpose and plan for each investigation depends on: 

• The stage of the algorithm 

• The accrued knowledge from earlier investigations 

• Other engineering and process knowledge 

We classify all effective ways to reduce variation into seven approaches. A unique 
aspect of the algorithm forces early consideration of the feasibility of each of the 
approaches. Selecting a working approach helps generate effective and efficient solutions. 
The choice of approach affects the process knowledge required and hence how we proceed. 
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Some of the variation reduction approaches (but not all) require knowledge of a domi- 
nant cause of variation. We present a low-cost strategy for finding a dominant cause based 
on families of causes and the method of elimination. The method of elimination uses a 
series of simple investigations, each of which is designed to eliminate a large number of 
possibilities from those remaining. 

We illustrate all aspects of the algorithm with many examples adapted from our expe- 
rience. In some cases, we have disguised the data to protect confidentiality; in others, we 
have taken some liberties with what actually happened to make a point. 

Throughout the book, we use the statistical software package MINITAB for all calcu- 
lations and most displays. To apply the Statistical Engineering algorithm, the user requires 
a software package capable of making basic plots and finding simple numerical summaries. 
By referring to the procedures in the software, we avoid algebraic expressions for the most 
part. We describe the calculations with words and let the software deal with the numerical 
implementation. 

We avoid formal or complicated statistical analysis procedures. Whenever possible, we 
use graphical displays to guide us to the correct interpretation of the data. We assume that 
the reader has been exposed to basic statistical concepts and tools, such as standard devia- 
tions, averages, histograms, run charts, box plots, scatter plots, process maps, and flow- 
charts. We provide detailed explanations of more sophisticated analysis tools as needed, 
including multivari charts, analysis of variance (ANOVA), regression, and designed exper- 
iments. We include appendices to explain how to use MINITAB to produce the analysis for 
all of the methods discussed. 

Important issues surround the management of process improvement projects. These are 
the same issues that arise in any project management exercise. Priorities must be set, plans 
and schedules made, resources provided, and so on. We do not deal with these issues in 
detail; rather, we focus on the algorithm, the variation reduction approaches, and the tools 
required to achieve variation reduction. 

The Statistical Engineering algorithm is not meant to replace global improvement systems 
such as Six Sigma. It is focused on and designed for process improvement in high- to medium- 
volume manufacturing processes. We suggest that the algorithm, strategies, and methods be 
incorporated into a general improvement system and used where appropriate. 

 
 
TARGET AUDIENCE 

The primary audience of this book is people who are involved in the improvement of man- 
ufacturing processes. They include: 

• Process engineers with responsibility for reducing variation, decreasing costs, 
improving quality, and so on 

• Six Sigma Green Belts, Black Belts, and Master Black Belts 

• Trainers in process improvement methods 

• Academics and students interested in quality and productivity improvement 

• Teachers and students of courses in engineering statistics 
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WHY THIS BOOK IS NEEDED AND HOW IT WILL 
BENEFIT THE READER 

 
This book is unusual because it focuses directly on the goal of variation reduction through 
the use of the Statistical Engineering algorithm and its associated approaches. The book is 
not a collection of statistical analysis tools and methods useful in achieving the goal. Hav- 
ing a lot of tools at your disposal does not help if you do not have a good idea what to do 
next or when to use a particular tool. 

This book will benefit the reader in many ways. In particular, it will help you learn: 

• A structured way to address variation reduction problems through a series of 
process investigations, each depending on what has been learned to that point 

• The seven variation reduction approaches 

• How to conduct empirical investigations in a sound manner to get reliable 
conclusions 

• The method of elimination for finding a dominant cause of variation 

• The appropriate use of statistical tools to support the structured algorithm 
• How to assess feasibility and implement each of the seven variation reduction 

approaches 

We present numerous examples and three case studies to convince you that the algo- 
rithm works. 

 
 
 
HOW TO USE THIS BOOK EFFECTIVELY 

 
While reading the text, we suggest you start an improvement project, or at least think about 
your own process problems. The more analogies you can draw between our examples and 
your processes, the better you will understand the material. 

We advise the reader to try the exercises and explore the data sets to help gain confi- 
dence in the use of the approaches and methods. 

 
 
 
STRUCTURE OF THE BOOK 

This book is structured around the Statistical Engineering variation reduction algorithm. 
To limit length and cost, we have divided the book into two parts. In the printed text, we 
present the algorithm and the concepts and tools needed to use it effectively. On the 
enclosed CD-ROM, we provide chapter supplements, case studies, exercises, data sets, 
and appendices. In the chapter supplements, we give more technical details, discuss some 
important complications and competing methods, and give references for further reading. 
The printed text can stand alone, but we believe you will find the supplements helpful. 
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There are four major parts in the printed text: 

Part I: Setting the Stage—We start by introducing the language of processes, 
such as outputs, fixed and varying inputs, dominant cause, and so on. Then we 
present the variation reduction algorithm, the seven variation reduction approaches, 
and a framework (QPDAC) for learning empirically by investigating the process. 

Part II: Getting Started—We look at how to focus, define, and quantify a problem. 
We also look at methods for assessing the measurement system and for choosing 
a working variation reduction approach to guide further investigations. 

Part III: Finding a Dominant Cause of Variation—We describe the method 
of elimination for finding a dominant cause that uses families of causes of 
variation. We provide a number of investigation plans and analysis methods to 
help eliminate possible causes. We introduce experimental plans to verify that we 
have found a dominant cause. 

Part IV: Assessing Feasibility and Implementing a Variation Reduction Approach— 
We return to the choice of variation reduction approach in light of the results 
of a search for the dominant cause or a decision to skip such a search. In 
separate chapters, we discuss assessing the feasibility of and implementing 
each approach. We finally consider validating the solution and look at methods 
for preserving the gains. 

The enclosed CD-ROM contains: 

• The chapter supplements 

• Three case studies 

• Exercises with solutions 

• All data from the examples and exercises (in both Microsoft Excel and 
MINITAB worksheet format) 

• Appendices that will help you use MINITAB 
 

In summary, the outstanding features of the book are: 

• A structured algorithm for reducing variation in processes 

• A classification of potential solutions into seven variation reduction approaches 

• An emphasis on planning for data collection and simple analysis methods 

• Use of the method of elimination to economically find a dominant cause of 
variation 

• Many examples (with more than 100 datasets available) to illustrate all stages 
of the algorithm 

• Separation of the “how to” (main text) from the supplementary material (CD-ROM) 
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• Demonstration of the use of MINITAB to help with the implementation of 
statistical tools, allowing greater focus on the interpretation of the data 

• More than 65 exercises designed to reinforce the ideas and tools 

We encourage readers to send us feedback regarding their use of Statistical Engineer- 
ing and the related tools and methods. Our e-mail addresses are 
shsteiner@uwaterloo.ca and rjmackay@uwaterloo.ca. 

 
Stefan Steiner and Jock MacKay 
Waterloo, Ontario, Canada 
November 2004 

mailto:shsteiner@uwaterloo.ca
mailto:rjmackay@uwaterloo.ca
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Introduction 

 
 
 
 
 
 

Problems are only opportunities in work clothes. 

—Henry J. Kaiser, 1882–1967 
 
 
 

his book presents a systematic algorithm for reducing variation. The algorithm is tai- 
lored to high- to medium-volume manufacturing processes where it is feasible to 
measure the values of selected process inputs and outputs. 

We use the word variation to mean both the deviation of the output from a target value 
and the changing value of the output from part to part. For example, in a machining process 
that produces V6 pistons, the target value for the diameter is 101.591 millimeters. The 
measured diameter in millimeters of three successive pistons is 

 
 

101.593, 101.589, 101.597 
 

 
We can see variation in both senses since none of the pistons has the target diameter 

and all have different diameters. We will formulate problems by defining appropriate per- 
formance measures that capture the nature of the variation that we want to reduce. Exces- 
sive variation leads to poor performance, low customer satisfaction, scrap and rework, 
complex downstream control plans, and so on. If we can resolve such problems, we can 
reduce costs and improve quality and performance. 

The fundamental basis for the algorithm is our belief that by increasing knowledge of 
how and why a process behaves as it does, we will discover cost-effective changes to the 
process that will reduce variation. One way to increase process knowledge is to learn 
empirically, that is, to learn by observation and experimentation. Statistics is the discipline 
that teaches us how to learn empirically. Statistics provides the answers to questions such 
as “How should we plan our process investigation?” and “How do we interpret the data that 
we have?” The algorithm we propose relies heavily on statistical methods and tools com- 
bined with existing engineering knowledge and theory. Using the algorithm, we will plan 
and carry out one or more investigations to learn about process behavior. 
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2 Chapter One: Introduction 
 
 

 

In most cases, to be cost-effective, the proposed changes involve better process control 
or alterations to process settings rather than fundamental design changes or replacing 
process equipment. We have classified these low-cost changes into a set of generic varia- 
tion reduction approaches and have structured the algorithm to force early consideration of 
an approach. 

The specific objectives of the book are to help you to: 

• Think strategically about how to achieve cost-effective variation reduction. 

• Reduce variation by following a step-by-step algorithm. 

• Understand sources of variation and their role in process improvement. 

• Learn how to better use empirical methods; that is, learn effective and efficient 
ways to plan, execute, and analyze the results of a process investigation. 

 
The purpose of this chapter is to provide examples of the types of problems we 

can address using the proposed algorithm. Here we discuss the problems only, not 
the path to their solution. We revisit these examples later in the book. We hope these 
problems will motivate you to read further. If you can draw analogies between your 
own processes and problems and those described, then we are confident that you can 
achieve great benefits by applying the algorithm, approaches, and methods found in the 
rest of the book. 

 
 
 

1.1 TRUCK PULL 
 

Front wheel alignment on light trucks is a set of characteristics that affect the handling of a 
vehicle and the life of its tires. One component of the alignment is called pull. Pull is an 
important characteristic because it indicates how well the truck will track on a standard high- 
way. A driver can feel pull—a value close to target will produce a more drivable vehicle. 

Pull is a torque, measured in Newton-meters, and is a function of right and left front 
wheel camber and caster angles. For the vehicles discussed here, the relation between pull 
and the alignment angles is 

 
 

Pull = 0.23*(right caster – left caster) + 0.13*(right camber – left camber) 
 
 

The alignment characteristics are measured on every truck assembled. In order to 
improve customer satisfaction, the manufacturer decided to reduce variation in pull around 
the target value. The performance of the process over a two-month period at the start of the 
project is shown in Figure 1.1. The histogram is based on pull values from 28,258 trucks. 

The histogram was created using MINITAB and the data given in the file truck pull 
baseline. You can find this file (in both a MINITAB worksheet and an Excel spreadsheet) 
on the enclosed CD-ROM. See the appendices for more information on using MINITAB. 
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Figure 1.1   Truck pull (as found). 

 
 

The dashed vertical lines on Figure 1.1 show the specification limits for pull, set at 
–0.12 and 0.58 Newton-meters. The target value is 0.23 Newton-meters. We see that every 
truck has pull within the specification limits (in fact, there are a few pull values outside 
these limits that are not visible in the histogram because of the large number of data points). 
Any truck with pull that does not meet the specifications is repaired and remeasured before 
shipment. 

The goal of the project was to reduce the variation in pull around the target so that the 
histogram would look like that in Figure 1.2. If this goal can be achieved, the process will 
produce a greater proportion of trucks with pull close to the target value; hence, there will 
be greater overall customer satisfaction. As well, the proportion of trucks needing rework 
will be smaller, thus reducing cost. 

This is a problem in reducing variation in pull from truck to truck. The process is cur- 
rently centered on the target. As shown by Figure 1.1, adjusting the process center to 
increase (or decrease) pull on every truck will make the process worse, because then more 
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Figure 1.2 Truck pull (as desired). 
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trucks will have pull outside the specification limits and fewer trucks will have pull near the 
target value. 

We have found that excessive variation from part to part is a widespread problem. For 
example, many measurement systems exhibit substantive variation if the same part is 
repeatedly measured, especially over a long period. This variation leads to poor process 
control, disputes between customers and suppliers, the scrapping of good parts, and so on. 
Often we understand enough about a process to have an easy method to keep the center of 
the process near the target value. We rarely have such an adjustment to reduce the variation 
from one part to the next. 

 
 
1.2 ENGINE BLOCK LEAKS 

A cast-iron foundry manufactured engine blocks, which were then machined at an engine 
assembly facility. The engine plant pressure tested each block for leakage in the oil and 
water passages and scrapped leaking blocks. The cost of the scrap, including the wasted 
machining, was several hundred thousand dollars per year. This cost was assigned to the 
foundry because it was accepted that the leaks were generated in the casting process. The 
foundry management established a team to reduce the frequency of block leakers. Fig- 
ure 1.3 is a run chart of the proportion of leaking blocks over several months’ production 
prior to the start of the project. The team’s goal was to reduce the proportion of leakers to less 
than 1%. 

This example is typical of many processes that generate scrap, rework, and returns due 
to defects. A painting process may produce visual defects such as dirt, craters, and so forth. 
A molding process can generate defects such as porosity, shrinks, or inclusions; an assem- 
bly process can deliver parts that fail to function; and so on. In all these examples, a part 
either has the defect or it does not. The target value is no defect. The goal of the project is 
to reduce the frequency of the defect—that is, to reduce the variation in the output by making 
more parts without defects. 

Problems defined in terms of a binary output rather than a continuous output can be dif- 
ficult because it is harder to learn about the process. In most applications, the defective rate 
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Figure 1.3 Proportion of leaking blocks versus month of production. 
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at the beginning of the project is likely to be low, so that investigations require large sample 
sizes to find a few defectives. However, we can sometimes translate a problem defined in 
terms of a binary output into one with a continuous output. For example, the cause of some 
of the leaks was the underlying wall thickness, a continuous characteristic. If an internal 
wall gets too thin, then a leak will occur. For these leaks, we can translate reducing the pro- 
portion of leakers into reducing variation in wall thickness about the target value. We 
expect to be able to learn about wall thickness variation more easily. When possible, we 
will translate a problem with a binary output into one with a continuous output. This is not 
always possible. For example, leaks due to sand inclusions cannot (easily) be directly asso- 
ciated with an underlying continuous characteristic, and we are forced to deal with the 
binary output and large sample sizes. 

 
 
 
1.3 CAMSHAFT LOBE RUNOUT 

The geometry of the lobes of a camshaft, as shown in Figure 1.4, is critical in the function- 
ing of an engine. The rotation of the camshaft lobes drives the opening and closing of the 
engine valves. The displayed camshaft has 12 lobes, three of which are indicated by the 
white arrows. 

Viewed from the side, the base of the lobe (±60° from the centerline) is ideally an arc 
of a circle. Figure 1.5 is a trace of the deviation from ideal, circle (in millimeters) over the 
base of one lobe. 

Of the six measured critical characteristics related to lobe geometry, base circle runout 
was historically the most problematic and thus was chosen as the focus of a variation 
reduction exercise. Base circle (BC) runout is a positive measure of the deviation (maxi- 
mum – minimum over the ±60° arc) of the actual lobe geometry from the ideal circle. A 
value of 0.000 millimeters means that the base is exactly circular. The maximum allowable 
BC runout is 0.040 millimeters, or 40 microns. 

A sample of 108 parts, 9 per day, was collected over 12 days, and the BC runout for 
each of the 12 lobes was measured on each camshaft. The 1296 runout measurements 
(recorded in microns) and some other geometric characteristics of the lobes are available in 
the file camshaft lobe runout baseline. A histogram of the runout values over all lobes is 
shown in Figure 1.6. 

The BC runout for all lobes was well below the specification limit, but because of 
the effects of this critical characteristic on engine performance, management initiated a 

 
 
 
 
 
 
 
 
 
 
 

Figure 1.4 Camshaft. 
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Figure 1.5 Lobe deviation from ideal. 
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Figure 1.6 Histogram of camshaft lobe BC runout (dashed line gives the specification 

limit). 
 

project to improve the process. Here the goal was to change the process so that the right 
tail of the histogram would be shifted to the left and a greater proportion of lobes would 
have runout close to zero. Because runout must be positive, adjusting the process to lower 
runout on all lobes was not feasible. In this context, we take variation reduction to mean 
that we will make a higher proportion of lobes with runout close to the target value of 0 
microns. 

There are many other process characteristics with a one-sided specification and a phys- 
ical lower bound. Examples include flatness, porosity, taper, and so on. We can improve the 
process performance defined in terms of such characteristics by increasing the concentra- 
tion of values near the target value. That is, we reduce the variation in the process output 
about the target value. 
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1.4 SAND CORE STRENGTH 

In a cast-iron foundry, there was breakage due to handling of the molded sand cores that 
create the cavities within the casting. The loss of cores added cost and threatened the finan- 
cial viability of the overall production of castings. The strength of cores was measured 
using a destructive measurement system. A sample of 100 cores (five samples spread out 
over a single day of five consecutive shots of the four-cavity mold) was measured to 
demonstrate the current process performance. The data are given in the file sand core 
strength baseline. The histograms in Figure 1.7 show the initial performance and the proj- 
ect goal in which the strength would be increased by three pounds on each core. 
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Figure 1.7 Current and initial desired core strengths (pounds). 

 

There was no obvious target for core strength. The specification for the core was that it 
not be broken. The team planned to increase core strength by increasing the concentration 
of resin in the core-making process. On first glance, this is an example of a problem where 
we can improve a process by making a one-time adjustment that increases or decreases the 
output characteristic on all parts, that is, by changing the process center. Later, the team 
discovered that overly strong cores caused casting defects. They changed the goal to elim- 
inate cores with low strengths. In other words, the new goal was to reduce variation in 
strength from core to core. 

It is often easy to find a low-cost solution to shift the process center. The challenge is 
to avoid side effects—in which we replace one problem by another, as in the sand core strength 
example. 

 
 
1.5 CRANKSHAFT MAIN DIAMETER 

In a process to machine crankshaft main journals, there was excess diameter variation. The 
histogram of the diameter at the front position of the first main at the start of the project is 
shown in Figure 1.8. Note the diameter was recorded as the deviation from the target value, 
measured in microns. The specification limits were ±4 microns. 
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Figure 1.8   Histogram of crankshaft diameters for the front position of the first main. 

 
 

The process was off target, and it seemed a simple matter to adjust the upstream 
grinders to reduce the average diameter closer to zero. Again, there were negative conse- 
quences. The process operators knew that crankshafts with oversized journals could be 
reworked but those with undersized journals were scrapped. They had deliberately centered 
the process above the target to avoid costly scrap. Here the goal is first to reduce piece-to- 
piece variation and shrink the width of the histogram. Then they could adjust the center of 
the process to the target without the risk of scrapped parts. 

 
 
 

1.6 PAINT FILM BUILD 

In a painting operation, there was excessive variation in film build (paint thickness) from 
vehicle to vehicle at particular locations. As a consequence, to meet the minimum film 
build specification of 15 thousandths of an inch, the target was kept well above the specifi- 
cation at 17. The film build of five consecutive cars was measured at five locations on the 
front door every hour for 16 hours. The data are given in the file paint film build multivari. 
A histogram of the film build values is given in Figure 1.9. We see that all film build meas- 
urements are above the minimum specification limit. However, running the process above 
target results in high paint usage and creates visual defects such as runs on occasion. The 
paint shop management initiated a project with the goal of reducing variation in film build. 
With lower variation, the film build target could be reduced, resulting in cost savings due 
to reduced paint usage and rework. 

Variation reduction projects are often linked with productivity goals. They may involve 
cost reduction, as in the paint film build example. In other situations, variation reduction 
may lead to increased throughput. For example, by virtually eliminating the need for 
rework due to imbalance in a brake rotor production process, the team was able to increase 
the daily volume. 
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Figure 1.9   Histogram of film build. 

 
 
1.7 REFRIGERATOR FROST BUILDUP 

The manufacturer of a so-called frost-free refrigerator designed for temperate climates 
expanded its market to several tropical countries. Almost immediately, there were many 
customer complaints about the frost buildup inside the refrigerator. These complaints had 
been nonexistent in the traditional market. A team was formed to reduce the number of 
complaints. The manufacturer feared that the opportunity for market expansion could eas- 
ily be lost. 

There was no clear baseline to specify the problem because there were relatively few 
refrigerators in service in the new market, and there were difficulties tracking which refrig- 
erators were in use and which were still to be sold. The goal of the team was to deliver the 
promised frost-free refrigerators to the customers in tropical climates, as measured by a 
reduction in the number of complaints. 

This problem is different in several ways from those described earlier. First, at the start 
of the project, there was no objective way to measure the output characteristic of interest. 
Whether frost built up or not could be determined only during customer usage. Second, the 
circumstances under which the problem occurred were better understood, because there 
had been no similar complaints of frost buildup in the traditional temperate climate market. 
In fact, the team was quickly able to identify the likely causes of the problem. The ambient 
temperature and humidity were higher in the new markets, and also customer usage was 
different. Some of the new customers opened and closed the refrigerator more often than 
expected and also added large volumes of warm items to the refrigerator all at once. These 
suspected causes of frost buildup were not under the control of the manufacturer. They 
dominated the effects of inputs that changed during manufacturing and assembly. 

Many problems have known or identified causes. In an automotive painting operation, 
process engineers discovered that a visual defect on the roof of the car could be eliminated 
by reducing the thickness (film build) of the clear coat, the last layer applied in the process. 
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However, there was a heavy price to pay for this supposed solution due to poorer overall 
appearance of the painted surface. Using the algorithm given in this book, the engineers 
found a solution that allowed film build to be increased without the appearance defect 
occurring. 

 
 
 

Key 
Points 

 

• We can describe different features of variation in the specification of a 
problem: 

–Part-to-part variation 
–Deviation from target 
–Defect rate 

• We can generate low-cost ideas for variation reduction if we better understand 
how and why a process varies. 

• We can gather this knowledge through a series of process investigations 
supplemented by existing knowledge and theory. 



 

I 

PART I 
Setting the Stage 

 
 
 

If I had to reduce my message to management to just a few words, I’d say 
it all had to do with reducing variation. 

—W. Edwards Deming, 1900–1993 
 

 
n this first part of the book, we explore the meaning and consequence of process variation, 

provide tools for quantifying variation in an understandable way, and discuss various 
sources of variation. We also present an algorithm for reducing variation, centered 

around seven variation reduction approaches. We explain the seven variation reduction 
approaches and give examples. Finally, as the key to improvement is acquiring new process 
knowledge, we discuss the QPDAC (Question, Plan, Data, Analysis, Conclusion) frame- 
work, used to plan and analyze process investigations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Statistical Engineering variation reduction algorithm. 
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2 
Describing Processes 

 
 
 

Failure to understand variation is a central problem of management. 

—Lloyd S. Nelson 
 
 

his book is about how to reduce variation in process output. Increased costs and 
decreased customer satisfaction are two of the negative consequences of excess vari- 
ation. In this chapter, we provide some common language and tools to describe 

processes and variation. 
 
 
2.1 LANGUAGE OF PROCESSES 

First, we introduce some terms to describe a process and its behavior. You will likely be 
familiar with these terms; we introduce them here so that we can use them without confu- 
sion throughout the book. For a running example, we look at a process used to manufacture 
cast iron exhaust manifolds, as shown in Figure 2.1. In the casting process, scrap iron is 
melted and doctored to adjust its chemistry and physical properties such as temperature. 

 

 
 
 

Figure 2.1   Exhaust manifold. 
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Sand molds are formed to determine the external shape of the manifold. Cores are molded 
to create internal space in the casting. A core is placed in the mold and the molten iron is 
poured. After cooling, the sand is shaken out, and the result is a rough casting. The casting 
is finished by machining various surfaces and drilling holes. Throughout, operators make 
measurements and process adjustments. They also inspect the castings for defects at sev- 
eral points. 

A process can be divided into subprocesses and is almost always a part of a larger 
process. In the casting example, the melting of the iron, the creation of the mold, and the 
core-making are all examples of subprocesses. The manufacturing process for the manifold 
sits inside a system that includes the design process for both the part and the manufactur- 
ing process; the sales, order, and billing processes; the delivery process; and so on. 

A process map or flowchart is a good tool to describe a process, especially if we choose 
an appropriate level of detail. For example, we can represent the major subprocesses or 
operations within the casting process by the simple flowchart in Figure 2.2. 

This flowchart shows the major subprocesses and the order in which they occur. We 
can describe the subprocesses in much finer detail if we choose. The flowchart clarifies 
which operations in the process are parallel and which are sequential. The chart also 
shows the boundaries that we have selected for the process. We could have chosen to 
include more upstream or downstream subprocesses as part of the manufacturing process. 
The selection of process boundaries, like the choice of the level of detail, is driven by a 
tradeoff between presenting facts and providing information. Too much detail can obscure 
the information in the chart. We take these issues into consideration when designing a useful 
flowchart. See Harrington (1987) for a detailed discussion of chart selection, construction, 
and use. 

One important feature of a process is that it is repeatable; each time it operates, the 
process produces a unit. In the example, each finished casting is a unit. For a manufactur- 
ing process, we can think of a unit as a part. For a measurement process, a unit is the act of 
making a measurement. 

We use the word characteristic to describe a feature or quality of a unit. For the cast- 
ing process, characteristics of a manifold include its hardness, its dimensions, the pouring 
temperature of the iron, the properties of the sand in the cores used for that casting, and so 
on. The customers are the people or organizations that use the process units. Here, the cus- 
tomers include the assemblers of the engine and the ultimate users of the vehicles that 
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Figure 2.2 Exhaust manifold process map. 
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incorporate the engines. Output characteristics, or more briefly outputs, are characteristics 
of interest to customers. The properties of the casting that describe its performance in the 
engine and ease of assembly in the engine plant are outputs. We call characteristics of the 
casting such as the pouring temperature of the iron and the properties of the sand cores 
input characteristics, or inputs for short. We also classify characteristics in terms of the val- 
ues they can take. 

 

Classification Description Examples 
binary only two possible values defective or not, high or low 

discrete integer values number of defects 

ordinal ordered categories score: low, medium, high 

categorical unordered categories supplier: A, B, C 

continuous a range of real numbers length, hardness, time 
 

The suppliers are the people or organizations that control the subprocesses that deter- 
mine many of the inputs. In the casting process, some suppliers are the providers of the 
sand for the cores and other raw materials, the equipment manufacturers, and so on. To 
complete the picture, we call the people involved in the process its owners. In the example, 
the owners are the process operators and managers. The owners are interested in the cost 
associated with each unit as well as many other input and output characteristics. 

We classify input characteristics as fixed or varying. An input is fixed if it changes 
only when we deliberately make it change. For example, the target value for the pouring 
temperature of the iron is a fixed input. The instruction to the operator to sample five 
parts every hour, measure the hole locations, and make an appropriate adjustment is a 
fixed input. The fixed inputs may be changed by the process owners. An input is varying 
if its value changes from unit to unit or time to time without deliberate intervention. For 
example, the dimensions of the cores change from casting to casting. Other varying 
inputs, such as pouring temperature and raw material characteristics, change more slowly 
over time. 

Note that the target value or set point for pouring temperature is a fixed input, but the 
actual pouring temperature is a varying input. We need to keep this idea clear because 
sometimes inputs that we consider fixed actually vary. For example, two operators may 
interpret the same set of instructions in different ways. The instructions are a fixed input, but 
the implementation of the instructions is a varying input. 

 
 

2.2 CAUSES OF VARIATION 

To reduce variation, we must change one or more fixed inputs of the process. In Chapter 3, 
we consider some approaches to variation reduction in which we first identify a dominant 
cause of the variation and then change fixed inputs to reduce the effects of these causes. In 
this section, we make clear this notion of a dominant cause. We continue with the casting 
and machining example to illustrate the points. 
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In Chapter 1, we saw that most problems involved reducing the unit-to-unit variation. 
We define a cause with respect to this kind of variation. 

A cause of variation in a process output is a varying input with the property that if all other 
(varying) inputs were held constant, then the output changes when the input changes. Part of 
this definition is conceptual since it is not possible to hold all other inputs constant for all units. 

In the example, suppose the output is the hardness of the casting measured at a partic- 
ular location. Hardness varies from casting to casting. The concentration of carbon in the 
iron when it is poured into the mold is a cause of hardness variation. When this concentra- 
tion changes, all other inputs being constant, the hardness of the casting will change. There 
are many causes of hardness variation. 

Now for our first controversial statement. A fixed input cannot be a cause of variation. 
For example, the design of the product or process is not the cause of variation since the 
design is a fixed input. Since we are interested in problems defined in terms of variation, 
we will never say that the design is the cause of the problem. As you will see, we will 
change one or more fixed inputs to solve the problem, but these are not the causes. 

We use a simple mathematical model to describe a cause by specifying the values of all 
varying inputs (again, this is only conceptually possible for a real process) for any one unit 
produced by the process. We write the functional model 

 
 

output = f (input1, input2, ...) 
 

 
With this model, input1, for example, is a cause if the output changes when the value 

of input1 changes while all other inputs are held constant. Note that the function f ( ) 
depends implicitly on the values of the fixed inputs. 

The model is useful because it helps us understand what is meant by the effect of a 
cause. The effect of the cause (or varying input) is the change in the output produced by a 
change in the input. The effect depends on the size of the change in the input, the initial 
value of the input, and perhaps the values of the other inputs. A cause has a large effect if a 
relatively small change in the input produces a relatively large change in the output. We 
define a small change in the input and a large change in the output relative to the variation 
we see in these characteristics under regular operation of the process. We simplify the lan- 
guage if we call all varying inputs causes, even those with no effect. 

For any process output, there are likely to be a large number of causes, each with an 
effect. We assume that the Pareto principle1 (Juran et al., 1979) will apply and that only a 
few causes will have large effects. We call these causes dominant. We base our strategies 
and approaches to reducing variation on the assumption that there will be only one or two 
dominant causes. We justify this focus on dominant causes more fully in Section 2.4. 

We can model the effect of a dominant cause as 
 
 

output = f (dominant cause) + noise, 
 

 
where f (dominant cause) is a function that captures the effect of the dominant cause and 
the term noise captures the effect of all the other inputs. For a dominant cause, the range in 
f (dominant cause) is greater than the output variation due to the noise.2 
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A dominant cause can be a single input or involve two or more inputs in a variety of 
ways. Figure 2.3 shows a dominant cause for a binary output that is either good (G) or bad 
(B). The horizontal line represents the normal range of values of the input. Small values of 
the input to the left of the dotted line correspond to good output, large values to bad output. 

 
 
 
 

G G G G B B B B 
 
 

Input value 
 

Figure 2.3 A dominant cause with continuous input and binary output. 
 
 

Figure 2.4 shows another example of a dominant cause. The left-hand plot in the figure 
shows a continuous input and the right-hand plot a discrete input. In either instance, we see 
the full range of variation for both the input and output on their respective axes. 

If both the input and output are binary (or discrete with a few possible values), we can 
depict a dominant cause using a table of percentages such as Table 2.1. 

We hope to find a single dominant cause of variation such as shown in these examples. We 
may fail for several reasons. First there may be no single dominant cause; instead, we may 
find several causes, each with a relatively large effect. Second, we may find that the domi- 
nant cause involves two (or more) inputs.3 Figure 2.5 shows two examples of a dominant 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dominant cause Dominant cause 

 
Figure 2.4 A dominant cause with continuous output. 

 
 
 

Table 2.1   A dominant cause with binary 
input and output. 

 Output pass Output fail 
Input low 80% 20% 

Input high 97% 3% 
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Figure 2.5   Two examples of a dominant cause involving two inputs with a binary output. 

 
cause involving two continuous inputs, and a binary output where we denote good output as 
G and bad output as B. In the example presented in the left panel, both inputs must be 
simultaneously large in order to get bad output. In the right panel, good output results when 
the two input values are both large or both small. The latter case may arise if the output is 
a clearance between two assembled components whose critical dimensions are described 
by inputs 1 and 2. 

Causes can be classified in many ways.4 For us, the key issue is the size of the effects. 
We want to find dominant causes that contribute substantially to the variation in the output. 

 
 

2.3 DISPLAYING AND QUANTIFYING PROCESS VARIATION 

We will need to quantify process variation at several stages in the variation reduction algo- 
rithm. For example, we may set the goal to reduce the variation by 50%. We require a 
numerical measure of variation to define this goal explicitly. 

We use the camshaft manufacturing process described in Chapter 1 to illustrate. The 
angle of the lobe axis is one important characteristic of the camshaft lobes. The specifica- 
tions are ±400 thousandths of a degree measured as the deviation of the lobe axis from the 
nominal direction. A project team collected a sample of 108 camshafts, 9 per day over 12 
days, and measured the angle error for each of the 12 lobes. The 1296 measurements of 
angle error and several other outputs are available in the file camshaft lobe runout baseline. 

For a continuous output with two-sided specifications such as the angle error, we use the 
average and standard deviation (stdev) to summarize process behavior. From MINITAB, we 

get the following output. 
 

Variable N Mean Median TrMean StDev SE  Mean 
angle 1296 –21.30 –18.00 –20.04 71.50 1.99 

 

Variable Minimum Maximum Q1 Q3 
angle –241.00 155.00 –67.00 30.00 
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Figure 2.6 Histogram of camshaft lobe angle errors. 

 
 

The average is –21.3 and the standard deviation is 71.5, as given in the columns Mean and 
StDev, respectively. See Appendix B for an interpretation of the other summary measures. 

For the camshaft example, we can interpret the average and standard deviation using 
the histogram of angle error given in Figure 2.6. 

The average is the point on the horizontal axis where the histogram would balance if 
we could cut it out of the page. In Figure 2.6, since the histogram is roughly symmetric 
about zero, the average (the balance point) is close to 0°. The width of the histogram is 
approximately six standard deviations when the histogram has a bell shape. Here, the width 
of the histogram is 400 thousandths of a degree and 6 stdev = 429. For a bell-shaped his- 
togram, almost all of the characteristic values will fall within the range 

 
average ± 3 stdev 

 
 

From this argument, we see that the standard deviation is a measure of the unit-to-unit 
variation. The average is a measure of the process center. The distance from the average to 
the target is a measure of how well the process is targeted and hence a measure of the off- 
target variation. The average and standard deviation are sometimes combined in a capabil- 
ity ratio,5 which can describe both kinds of variation simultaneously. 

In the example, the target value for angle error is 0°. If the collected data represent the 
long-term behavior of the process, we cannot reduce variation significantly by better cen- 
tering the process, that is, by adjusting the average to the target. Here, we must reduce the 
standard deviation to get a substantive reduction in the variation.6 

Why is the standard deviation so large? Since the standard deviation measures the vari- 
ation in angle error from lobe to lobe, there must be changes in varying inputs from lobe to 
lobe in the sample that explain the angle error variation. To reduce the standard deviation, 
we may first try to identify dominant causes; that is, varying inputs making major contri- 
butions to the standard deviation. Then we can try to eliminate the effects of these causes. 
We make this idea clear in the next section. 
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Figure 2.7 Histogram of camshaft lobe BC runout. 

 
In Chapter 1, we described a problem in which the goal was to reduce variation in base 

circle (BC) runout, another characteristic of a camshaft. In that case, the target value was 
zero and the histogram of runout values is shown in Figure 2.7. 

The average and standard deviations (given as follows by MINITAB) are roughly 12.6 
and 6.4 microns, respectively. 

 
Variable N Mean Median TrMean StDev SE  Mean 
BC  runout 1296 12.643 11.100 12.271 6.389 0.177 

 

Variable Minimum Maximum Q1 Q3 
BC  runout 2.600 33.900 7.425 17.000 

 

The histogram is not bell-shaped. The average ± 3 standard deviations is (–6.6, 31.8). 
We see that some values are above 31.8 and none are close to –6.6. We no longer have the 
interpretation that almost all of the values fall within three standard deviations of the aver- 
age. However, we can still interpret the standard deviation as about 1/6 of the range since 
(33.9 – 2.6) ÷ 6 = 5.2. Here, to reduce variation around the target, we need to shift the aver- 
age to the left and reduce the standard deviation. If we identify the dominant cause, we may 
find a low-cost way to reduce the variation. 

Somewhat surprisingly, adjustment of the process center to the target can play a role in 
reducing unit-to-unit variation. To see how this happens, consider again the angle error 
data. Recall that there are 12 lobes on each camshaft with the positions numbered 1 to 12. 
We can use a box plot (see Appendix C), as given in Figure 2.8, to compare the perform- 
ance of angle error from lobe position to position. 

The lobe averages range from roughly 45 (lobe 2) to –90 (lobe 12). If we adjusted the 
process on each lobe separately so that the angle error average was on target for each lobe, 
then the overall standard deviation would be reduced to 61.6 from 71.5. You can see this 
result qualitatively by imagining all of the boxes in Figure 2.8 being shifted vertically to 
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Figure 2.8 Box plots of camshaft lobe angle errors by lobe position. 

 
 

have a centerline on zero. Then the range of values shown by the whiskers on the box plots 
and the overall standard deviation would be smaller.7 

Data summaries such as the average, standard deviation, histogram, and box plots do 
not show how the process output varies over time. To show this behavior, we use a run 
chart, a simple plot of the output values against the order or time of collection. The run 
chart for the angle-error data from lobe 12 is shown in Figure 2.9. 

The run chart shows how the process output varies over time. We may see cycles and 
smooth patterns on such a plot. The time structure of the output variation is important when 
we define the problem baseline (Chapter 6) and when we consider feedback controllers 
(Chapter 18). In Figure 2.9, we see most of the full range of variation from one camshaft to 
the next. There is no obvious longer-term pattern. In the production of V6 pistons, the diam- 
eter was recorded for one process stream at Operation 270 every minute for 200 minutes. 
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Figure 2.9 Run chart for angle error at lobe 12. 
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Figure 2.10 Stream one V6 piston diameter at operation 270 by hour. 

 
 

The run chart is given in Figure 2.10. Here, the diameter shifts occasionally but relative to 
the long term, the output variation is small over the short term. 

We can apply these numerical summaries and plots to data for a continuous output. If 
the output is binary (typically defective or not) or categorical with only a few values, we 
use proportions to quantify process variation. For example, in the process that produces 
manifolds described in Section 2.1, there are two manifolds produced in each mold. Dur- 
ing an investigation, a team collected a sample of 40 castings, 20 from each cavity labeled 
A and B. The team classified each casting as defective (1) or not (0). We summarize the 
variation using the proportion defective. From MINITAB we get 

 
 

Tabulated Statistics: output, cavity 

Rows: output Columns: cavity 
 
 
 
 
 
 

In this case, 2  40 = 5% of the castings in the sample are defective. The corresponding 
percentages are 0% and 10% for cavities A and B, respectively. We do not find histograms 
or bar charts helpful for these data. We can sometimes use a run chart to display clusters of 
defectives over time. 

We have presented a number of charts and statistics for quantifying and describing 
process variation. We construct these summaries from a sample of units collected over time 
from the process. We must be careful that we collect data that gives us an accurate picture of 
the long-term process performance. For example, we would not have seen the structure of the 
variation over time in Figure 2.10 as clearly if we had sampled 200 pistons over a few hours 
rather than over 200 hours. We deal with this critical idea technically in Chapter 5 and 
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practically throughout the book whenever we describe a process investigation. The bottom 
line is that we will not make progress without careful thought on how we collect process data. 

 
 
2.4 MODELS FOR VARIATION AND THE EFFECTS OF 

CAUSES 

Throughout the book, we use a simple model to connect the causes and the output. The 
model will help us identify dominant (and unimportant) causes of variation and to quantify 
their contributions to the variation in the output. As well, we can use the model to under- 
stand how to combine contributions from various causes and to understand how variation 
is transmitted through a process. The functional model, output = f (input1, input2, ...), 
which we introduced in Section 2.2, is useful to explain the idea of a cause and its effect but 
is too complex to apply in practice. 

The basis of the model is a mathematical representation of a histogram that specifies 
the relative frequency with which different output values occur. To avoid confusion with 
the measured values, we denote the output in the model by an uppercase letter, typically Y. 
We associate a smooth curve, an idealized histogram, with Y as shown in Figure 2.11. In 
this case, the model is a Gaussian curve8 (also called a bell or normal curve) that can be 
specified by two parameters, the mean (or center of the symmetric curve) and the standard 
deviation, a measure of the spread of the values. The mean and standard deviation (sd) 
associated with the model are directly analogous to the average and stdev of the histogram. 
The deviation between the mean and the target represents the off-target variation and the 
standard deviation describes the variation from unit to unit. 

When we apply the model, we estimate the mean and standard deviation using the val- 
ues of the output characteristic in a sample of units from the process. 

The model behaves as expected if we rescale the output. Suppose the output value Y is 
changed by first multiplying by one constant (b) and adding another (a) so that 

 
Ynew = a + bYold 

 
 
 
 
 
 
 
 
 
 

Standard 
deviation 

 
 

Target Mean 
 
 
 

Output  characteristic 

 
Figure 2.11 A Gaussian output model. 
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Then, in the model, the mean and standard deviation are changed to 
 
 

mean(Ynew) = a + b mean(Yold),  sd(Ynew) =|b| sd(Yold) 
 

For example, suppose the model for a temperature output has mean 1234°F and stan- 
dard deviation 56.7°F. If we change from Fahrenheit to Celsius (°C = 0.556°F – 17.778), 
then the new model has mean 668°C and standard deviation 31.5°C. Note that if we multi- 
ply Y by negative one, the standard deviation in the model does not change. 

We want to decompose the model for the output into pieces corresponding to the 
effects of causes. Consider the following example. Suppose that two components A and B 
are stacked and the height of the assembly y is the output of interest. This is illustrated in 
Figure 2.12. 

 
 
 

Component A height 
 

Assembly height 
 

Component B height 
 
 
 

Figure 2.12 Stack height. 
 

We have a model for the height of each component as described in Table 2.2. The 
means and standard deviations are based on data collected from the process that produces 
each component. 

Here XA and XB represent the effect of component A and component B on the stack 
height. As such, we can construct a model for stack height from the two models of compo- 
nent heights, namely 

 
 

Y = XA + XB 

 
Adding the models does not mean that we add the idealized histograms. Fortunately, 

there are simple rules to describe how to combine the means and standard deviations. For 
the means, we get 

 
 

mean(Y) = mean(XA ) + mean(XB) 
 

Table 2.2   Model for each component. 
Component Model Mean Standard deviation 

A XA 12.212 0.045 
B XB 17.567 0.033 
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In words, the mean of the sum is the sum of the means. This formula has important con- 
sequences when we adjust a process center to target by changing a fixed input. For exam- 
ple, we can use the model to predict the effect on the output if we shift the mean of 
component A. 

For the standard deviation, we have 
 

 ( ) ( ) ( )2 2
A Bsd Y sd X sd X= +   (2.1) 

 
In words, the standard deviation of the sum is the square root of the sum of the squares 

of the standard deviations of the terms in the sum. There is a demonstration in the exercises 
to convince you that this key formula is true. Equation (2.1) applies when the two compo- 
nent heights vary independently. 

Using the model, the mean and standard deviation of the assembly height are 
 
 ( ) ( ) 2 212.212 17.567 29.779, 0.045 0.033 0.056mean Y sd Y= + = = + =  
 

Equation (2.1) has many important consequences. The standard deviation of the sum is 
much less than the sum of the standard deviations. This is good news when you are building 
up assemblies, because the overall variation will be less than the sum of the component vari- 
ation. However, it is bad news when it comes to reducing variation. To see why, suppose that 
(for a price) we contemplate reducing the standard deviation of the height of component B 
by 50% from 0.033 to 0.016. We can use the model and Equation (2.1) to predict the impact 
on the variation of the assembly height. The effect on the standard deviation of the assem- 
bly height is surprisingly small; the standard deviation becomes 0.048, a 15% reduction. 

More generally, suppose we consider only two sources of variation, one attributed to a 
particular cause and the second to all other causes. To be specific, suppose that the specific 
cause (actually a group of causes) is the measurement system, so that all other causes are 
responsible for the variation in the true value of the outputs. If the effects are additive and 
independent, at least approximately, the overall standard deviation is 

 
 
 

 ( ) ( ) ( )2 2total due to measurement due to restsd sd sd= +  
 
Now suppose that the standard deviation due to the measurement system is 30% of the 

overall standard deviation, that is, the ratio of sd(due to measurement) to sd(total) is 0.3. 
What is the percentage reduction in overall variation if the variation due to the measure- 
ment system is eliminated? 

We constructed Figure 2.13 to give the percent reduction in overall standard deviation 
if we could eliminate completely the contribution of an identified cause. From the plot, we 
see that when the ratio of the sd(due to cause) to the sd(total) is 0.3, the potential gain is 
about 5%. In other words, if the ratio of measurement system variation to total variation is 
0.3, you can reduce the overall standard deviation by at most 5% if you replace the current 
measurement system with one that is perfect. 
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Figure 2.13 Reduction in variation if we remove a cause contributing a given proportion of the 

total variation. 
 

In the stack height example, the ratio of ( )Bsd X  to ( )sd Y  is 0.59, and thus, by 
eliminating the variation in component B completely we can reduce the overall standard 
deviation by about 20%. Similarly, the ratio of ( )Asd X  to ( )sd Y  is 0.80, and by 
eliminating the variation in component A, we reduce the overall standard deviation by 
about 41%. 

The message from Figure 2.13 is that we need to address dominant causes of variation 
in order to make a significant reduction in variation. If we rank the potential gains (in terms 
of percent reduction in overall standard deviation) by eliminating the contributions of var- 
ious causes, we expect to see a Pareto chart like Figure 2.14. There is little opportunity for 
gain in identifying causes with small contributions to the overall standard deviation. For 
this reason, the proposed variation reduction algorithm (see Chapter 4) focuses on finding 
and dealing with dominant causes. 
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Figure 2.14 Pareto chart of potential gain. 
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We can also use a model to describe how variation is transmitted through the process. 
Suppose the scatter plot of the output versus some specific input is given by the left-hand 
side plot in Figure 2.4. We adopt the model 

 
 

Y = a + bX + noise, 
 

 
where Y represents the output, a + bX the effect of the identified cause, X, and noise the rest 
of the causes, presumably unidentified. The parameters a and b describe the linear relation- 
ship between Y and X. From the model we can see that 

 

 
 ( ) ( ) ( )2 22 noisesd Y b sd X sd= +  
 
In this example, we denote sd (due to X) by b*sd(X). Using the model, we can predict 

how much of the standard deviation in Y is due to changes in X. For example if we could 
hold X fixed (that is, make its standard deviation 0), then the standard deviation of Y will be 
reduced to standard deviation of the noise. We can estimate this residual standard deviation 
by fitting a line to the scatter plot in Figure 2.4 (see chapters 10 to 12). We can also con- 
template changing a fixed input to change the slope b; again, we can use the model to pre- 
dict the effect of this change. 

We can construct similar models for binary outputs. These are more complex and prove 
less useful so we omit them here. 

 
 
 
 

Key 
Points 

 

• Process descriptions should be kept as simple as possible while still capturing 
the needed information. 

• Variation is an attribute of the process, not of single units produced by the 
process. 

• We can quantify and describe process variation using summaries such as aver- 
age, standard deviation, histograms, and run charts. 

• Reducing variation in a cause has a substantial effect on the overall variation 
only if the cause is dominant. 

• To determine the effect of various sources of variation on the overall variation, 
we have 

• ( ) ( ) ( )2 2due to specific cause due to all other causessd overall sd sd= +
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End Notes (see the Chapter 2 Supplement on the CD-ROM) 

1. The Pareto principle as applied to variation reduction problems is explored in more detail in 
the supplement. 

2. We give a more formal derivation of the definition of a dominant cause. Some possible input- 
output relationships are also explored. 

3. In the chapter supplement, we define what it means for a dominant cause to involve two (or 
more) inputs and explore the consequences. 

4. We can classify causes of variation in many ways. For example, in Statistical Process Control 
(SPC), we speak of special and common causes. Taguchi (1986) calls causes controlled or 
noise and subdivides these classes even further. We look at these classification systems and 
their relationship to variation reduction. 

5. There is an alphabet soup of capability ratios—such as Ppk, Cpk, and so on—used to quantify 
process performance and its relationship to specifications. We give a brief discussion of these 
indices that are sometimes used to set the goal for a variation reduction project. 

6. We have described two kinds of variation, deviation of the average from the target and 
variation from unit to unit. We provide a formula that relates the two kinds of variation to the 
“variation from the target,” the single measure of variation that is likely related to cost. 

7. In the camshaft lobe BC runout example, we showed how aligning the average angle error for 
each lobe could reduce the overall standard deviation. We give a key formula widely used in 
the analysis of variation to connect the overall standard deviation to the variation within 
groups and group to group. 

8. The Gaussian distribution is widely applicable. We describe some of its key properties. 
 
 
 
 
 
 
 

Exercises are included on the accompanying CD-ROM 
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3 
Seven Approaches to 

Variation Reduction 
 
 
 

A fool can learn from his own experiences; the wise learn from the 
experience of others. 

—Democritus, 460–370 B.C. 
 
 
 

here are many ways to change fixed inputs in the process to reduce variation in an 
output characteristic. In this chapter, we classify methods for variation reduction 
into seven generic approaches (MacKay and Steiner, 1997–98): 

1. Fixing the obvious based on knowledge of a dominant cause of variation 

2. Desensitizing the process to variation in a dominant cause 

3. Feedforward control based on a dominant cause 

4. Feedback control 

5. Making the process robust to cause variation 

6. 100% inspection 

7. Moving the process center closer to the target 

We must identify a dominant cause of the variation for the first three approaches but not the 
final four. 

To implement any of the approaches, we need to change one or more fixed inputs. The 
possible changes include: 

• Changing a set point (for example, machine settings, specifications for an 
input, supplier, and so on) 

• Adding or changing a process step (for example, adding inspection, replacing a 
gage, retraining an operator, rewriting instructions, and so on) 
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• Changing the control plan (for example, adding a feedback or feedforward 
controller, changing the current controller, and so on) 

• Changing the product design 

These changes can be implemented anywhere in the process including at suppliers. We 
need to be careful since changing any fixed input may add significant operating costs or 
produce serious side effects defined in terms of other process outputs. 

In this chapter, we introduce and discuss the seven variation reduction approaches. For 
each approach, we discuss how and when it works and the potential difficulties of imple- 
mentation. We provide details and further examples in chapters 14 through 20. 

The variation reduction approaches are an integral part of the proposed algorithm. The 
algorithm is the topic of Chapter 4. The ultimate aim of the algorithm is to lead to process 
improvement by implementing one (or more) of the seven variation reduction approaches. 
We provide further comparison and discussion of how to choose an approach in chapters 
8 and 14. 

 
 
3.1 FIXING THE OBVIOUS BASED ON KNOWLEDGE 

OF A DOMINANT CAUSE 

After finding a dominant cause of variation, we can sometimes reduce variation in the out- 
put by implementing an obvious fix. For instance, we might identify temperature as a 
dominant cause and reduce temperature variation by more frequent adjustment. The effect 
of reducing variation in a (continuous) dominant cause is illustrated by the scatter plots in 
Figure 3.1. The vertical dashed lines specify the range in the input (the dominant cause 
here) and the horizontal dashed lines the corresponding range in the output. If we reduce 
the variation in the input, as shown in the right panel of Figure 3.1, the variation in the out- 
put will be substantially reduced. 

 
 

Original process Improved process 
 

   

 

Input Input 

 
Figure 3.1 Reducing variation in a dominant cause. 
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We can sometimes eliminate variation in the dominant cause. In a drilling process, there 
was a frequent problem with holes drilled in the wrong location. Plates were drilled on a 
multispindle drill press. The defects were not found until assembly. Setting a plate upside- 
down or rotating it from the correct orientation before drilling was the dominant cause. The 
process engineer redesigned the fixture holding the plate so that it was impossible to mount 
the plate in the press incorrectly. The variation in the dominant cause was eliminated. 

Figure 3.1 shows a continuously varying dominant cause. We can also reduce variation 
in a discrete cause, as shown in Figure 3.2. The dashed horizontal lines show the range of 
output. In the left panel of Figure 3.2, we see that machine number is a dominant cause of 
variation in the output. There are large differences in the average output level (process cen- 
ter) for different machines. In the right panel of Figure 3.2, we see that we can reduce vari- 
ation by aligning the average output for each machine. There may be an obvious method 
for making such an adjustment. 

For example, if a dominant cause is the difference in how two operators control the 
process, then we can reduce variation by retraining the operators and clarifying the control 
plan. In another example, a team identified the difference between two suppliers of valve 
lifters as the dominant cause of high oil consumption in truck engines. The team could 
eliminate most of the problem by switching to a single supplier or by establishing proce- 
dures to reduce differences between the suppliers. 

In an engine assembly plant, the original problem was the high frequency of rejects for 
excessive noise at the valve-train test stands. The team discovered that there were large dif- 
ferences in average measured noise level for each of the three parallel test stands, even 
though the engines were haphazardly assigned to the stands for testing. After calibrating 
each stand, they found the average noise levels were roughly equal. The real challenge for 
the team was to keep the problem from recurring. 

There are two conditions necessary for the fix-the-obvious approach to work. First, we 
must be able to identify a dominant cause. We waste valuable resources and make little or 
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Figure 3.2 Aligning the process center stratified by a dominant cause. 
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no progress fixing problems based on a non dominant cause. Second, based on 
process knowledge, we must be able to address the cause with an obvious solution whose 
feasibility is without question. 

 
 
3.2 DESENSITIZING THE PROCESS TO VARIATION 

IN A DOMINANT CAUSE 

If we find a dominant cause as shown in the left panel of Figure 3.3, we can reduce varia- 
tion in the output by flattening the relationship between the input (dominant cause) and the 
output as shown on the right panel of the figure. The dashed horizontal lines show the range 
of output values for the original and improved processes. We reduce the sensitivity of the 
output to variation in the input by changing some fixed inputs. We do not reduce variation 
in the dominant cause. 

We find process desensitization useful when the variation in a dominant cause is hard 
or impossible to control. For example, we discussed a frost buildup problem in refrigerators 
in Chapter 1. The dominant causes of the variation in frost buildup were environmental and 
usage inputs, such as ambient temperature and the average number of times per hour that the 
door was opened. You can imagine that the instruction “Open this fridge at most once per 
hour” to reduce variation in a dominant cause would not be effective here. Instead, the man- 
ufacturer decided to investigate a number of design changes (that is, changes of fixed 
inputs) to reduce the sensitivity of the refrigerators to varying usage inputs. The changes 
investigated were directed by the knowledge of the causes of the problem. 

For a second example, a team was charged with reducing scrap due to porosity found 
on a machined surface of an engine block. The porosity was due to gas bubbles trapped 
near the surface of the block when the molten iron solidified. The team decided to search 
for a dominant cause and discovered that low iron-pouring temperature resulted in a high 
frequency of porosity scrap. Looking for a more specific cause, they found that low-pouring 

 
 

Original process Improved process 
 
 
 
 
 
 
 
 
 
 
 
 
 

Input Input 

 
Figure 3.3 Desensitizing a process to variation in a dominant cause (dashed horizontal 

lines show the range of output values). 
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temperature was due to unscheduled and scheduled (for example, lunch) downtime at 
the pouring operation, where there was no method for maintaining iron temperature. The 
cost of adding controls was prohibitive. The team looked for ways to desensitize the poros- 
ity level to pouring-temperature variation. They discovered that changing the wash on the 
sand cores substantially reduced the sensitivity of the porosity to low pouring temperature. 
The foundry adopted this low-cost solution. 

Process desensitization is a desirable approach since, once it is complete, no further 
action is required. First, we must find a dominant cause of variation. We can use knowledge 
of this cause to help select fixed inputs that we might change to desensitize the process. In 
the engine block porosity example, once the team understood that low pouring temperature 
was a dominant cause of porosity, they were led to consider changing the core wash and 
core sand composition. Without knowledge of a dominant cause, it is unlikely that they 
would have thought about changing these fixed inputs. 

It is difficult to predict when desensitization will work. This is its great weakness. We 
require a great deal of process knowledge to make an output less sensitive to variation in a 
dominant cause. Which fixed inputs should we change? We require expensive designed 
experiments to determine these inputs (if any exist) and their appropriate settings. The 
experiments may fail to determine process settings that lead to improvement. Also, the new 
process settings may lead to increased operating costs or negative side effects. 

 
 
 
3.3 FEEDFORWARD CONTROL BASED ON A 

DOMINANT CAUSE 

With feedforward control, we adjust the process based on measurements made on a domi- 
nant cause of variation, anticipating the effect on the output. Suppose we have identified a 
dominant cause as in the left panel of Figure 3.4. If we have a high value for the input, we 
predict that we will get a high value for the output, so we adjust the process center down- 
ward to compensate. 

 
 

Original process Improved process 
 
 
 
 
 
 
 
 
 
 
 
 
 

Input Input 

 
Figure 3.4 Reducing output variation using feedforward control. 



34 Part One: Setting the Stage 
 
 

 

Feedforward control is a form of process desensitization, as discussed earlier. However, 
with feedforward control, we achieve the desensitization by active adjustment as the process 
operates, rather than with a one-time change in the settings of some fixed inputs. We can see 
how feedforward control reduces the variation in the output in the right panel of Figure 3.4. 

In the development of the truck alignment process discussed in Chapter 1, the geome- 
try of the frame was a dominant cause of variation in the alignment characteristics. To 
reduce variation, the frame manufacturer measured each frame and recorded the geometric 
information with a bar code. The assembly plant read the information and manufactured a 
special component to adjust the alignment characteristics to remove the effect of frame 
geometry. This approach was relatively expensive but led to a dramatic reduction in the 
variation of the alignment characteristics. 

Selective fitting is another example of feedforward control. Components are sorted and 
matched to produce good assemblies. This adds cost and complexity to the assembly process. 
In a problem to reduce steering wheel vibration, a team discovered that a dominant cause was 
an imbalance in the transmission. The problem was reformulated to reduce imbalance in the 
transmission. Then the team identified two mating components that were dominant causes of 
the transmission imbalance. They improved the balance of the transmission by measuring 
and vectoring the two transmission components, that is, assembling the components so that 
their individual contributions to imbalance tend to cancel. As a second step, they sorted trans- 
missions on the basis of imbalance and used the better-balanced transmissions in the most 
sensitive vehicle models. Both changes are examples of feedforward control. 

Feedforward control works under the following conditions. First, we must identify a 
dominant cause. Second, the relationship between the cause and the output must be well 
known and stable over time. Third, we must be able to measure the cause in a timely way. 
Finally, there must be a way to adjust the process to compensate for the anticipated effect of 
the cause. As a result, to implement feedforward control, we may need to find a way to adjust 
the process center. 

If the dominant cause changes slowly and the conditions are met, we can use feedforward 
control with only occasional adjustments. For example, in a batch process, if a dominant 
cause is a raw material characteristic that is constant over a batch, we can use the value of 
the cause to set up the process to remove or reduce its effect. Here, we make an adjustment 
only once per batch. 

There are substantial costs and risks associated with feedforward control. Costs arise 
because we need to identify a dominant cause, measure the cause, and repeatedly adjust the 
process. There is a danger of overadjustment if there is measurement error in determining 
the input (the dominant cause) value, if the relationship between the input and the output is 
not well understood, or if the adjustment scheme is imperfect. In addition, repeated process 
adjustment may be impractical or costly and may introduce undesirable side effects. 

 
 
3.4 FEEDBACK CONTROL 

The idea behind feedback control is to monitor the output characteristic and to predict 
future behavior from current and past observations. If the predicted output value is far 
from the target, we make an adjustment to the process. In Figure 3.5, the panel on the left 



Chapter Three: Seven Approaches to Variation Reduction 35 
 

Fl
ow

 ra
te

 

O
ut

pu
t 

 
 

Original process Improved process 
 
 
 
 
 
 

Target Target 

 
 
 
 
 

Time Time 

 
Figure 3.5   Feedback control. 

 
 

shows the output of a process without feedback adjustment. The dashed horizontal lines 
indicate the range of output values. At any particular time, we can predict that the output will 
be larger in the future. If we predict that the output is far from the target, we adjust the 
process towards the target. The right panel of Figure 3.5 shows the dramatic reduction in 
variation of the output due to this approach. Here, using the feedback control procedure, we 
adjust the process whenever the output falls outside the adjustment limit (not shown, but 
near the top dashed horizontal line in the right panel of Figure 3.5). The size of adjustment 
is based on the deviation from the target of the last observed output value. 

A team wanted to reduce variation in the film thickness in the painting of fascias. Too 
much paint resulted in defects such as sags and runs, and too little paint created appearance 
defects. The team discovered that a dominant cause of thickness variation was the flow rate 
of the paint. They reformulated the film thickness problem in terms of flow rate. The team 
then identified a dominant cause of variation in flow rate that was addressed by making 
equipment modifications. After these changes, the flow rate continued to show a pattern in 
the variation over time as shown in Figure 3.6. 
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Figure 3.6 Variation in flow rate over time. 
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The team defined a feedback control scheme that involved considering an adjustment 
of flow rate every minute. If the flow rate fell outside prescribed limits, a valve was 
adjusted to move the process center to the target value of 103. The feedback scheme pro- 
duced a further substantial reduction in film thickness variation. 

As a second example, in a project to reduce scrap due to variation in the diameter of 
crankshaft journals, the team discovered that an automated 100% inspection gage drifted 
substantially over time. They could not determine the cause of the drift, so they decided to 
use a feedback controller to adjust the gage when appropriate. A reference part was meas- 
ured several times just after the gage had been cleaned and calibrated. The team used these 
measurements to establish a centerline and adjustment limits for the gage. Every four hours 
the reference part was measured, and if the measured value fell outside the limits, the oper- 
ators recalibrated the gage. 

The use of setup procedures based on first-off measurements is another example of 
feedback control. For example, an operator used the measured output of the first few units 
produced after a tooling change to adjust the machine. Once a good setup was achieved, 
no further process measurements were taken or adjustments made until the next tool 
change. 

We can apply feedback control successfully when three conditions are satisfied. First, 
the process must exhibit a strong time structure in the output variation as discussed in 
Chapter 2. Examples include drift due to tool wear and stratification due to batch-to-batch 
variation. Second, there must be an adjustment procedure to move the process center. 
Finally, the time to measure the output and adjust the process must be small relative to the 
rate of change of the process. 

The major advantage of feedback control is that it requires no knowledge of the domi- 
nant cause of variation. We use only the measured output values. A drawback is the high 
cost of process measurements and adjustments. Finally, due to the feedback nature of the 
control, there is an inherent time delay. To identify when an adjustment is required, we 
must first observe some output values that are significantly different from the target value. 
Thus, feedback control is always reactive. 

 
 
3.5 MAKING THE PROCESS ROBUST 

To make the process robust, we first determine a performance measure, such as the stan- 
dard deviation of the output values for 20 consecutive parts. Next we change one or more 
fixed inputs to see if the performance measure has improved. In Figure 3.7, we use a box 
plot to show performance, and the improvement due to changing the fixed inputs is clear. 
The horizontal dashed lines show the range of output values before the change in fixed 
inputs. 

The challenge with this approach is to identify which fixed inputs to change. For 
example, to measure the concentration of silicon in cast iron, the operator poured coins 
from a sample of molten iron, prepared the coins by grinding the surface, and then used 
a spectrometer to determine silicon concentration. The repeatability, defined as the 
variation when the same batch of iron was measured by the same operator in a short 
time, was unacceptably high. To reduce this variation, the team decided to adopt the 
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Figure 3.7   Making the process robust. 

 
 

robustness approach. First they selected a run and a performance measure, the standard 
deviation of the measured silicon concentration in five coins poured from the same 
batch of iron. Second, they selected a number of fixed inputs, including mold shape, 
sample polishing method, and sample temperature. They organized a large experiment 
in which all of the selected inputs were changed in an organized fashion. For each com- 
bination of the inputs, they prepared and measured five coins and then calculated the 
performance measure. They found new settings for several inputs that reduced the 
repeatability variation. 

As a second example, in a painting operation (discussed in Chapter 1), there was exces- 
sive variation in film build (paint thickness) from vehicle to vehicle at particular locations. 
As a consequence, to meet the minimum film build specification, the process operators kept 
the process center well above the lower specification. This resulted in high paint usage and 
occasional visual defects such as runs. To reduce the variation, the project team used the stan- 
dard deviation of film build over five consecutive panels (it was too expensive to use cars 
for this investigation) to measure performance. Then they varied five fixed inputs, including 
some process parameters and paint properties, to explore settings to reduce the variation. The 
team discovered new settings of the fixed inputs that reduced the panel-to-panel variation by 
a factor of two. The average film build was then reduced with substantial savings in paint and 
rework costs. 

Making the process robust will be successful if we can identify fixed inputs that can 
be changed to improve the performance measure. This approach is similar to desensitiz- 
ing the process to variation in a dominant cause. In both, the goal is to make the process 
less sensitive to variation in the dominant cause. However, with the robustness approach, 
we select and change fixed inputs without first identifying the dominant cause. Without 
such knowledge, we find it more difficult to determine which fixed inputs to change and 
by how much. There is considerable risk with the robustness approach that significant 
resources will be used in a fruitless search for better process settings. 

Note that we use the terms robustness and desensitization to label different approaches. 
Many authors use them interchangeably. 
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3.6 100% INSPECTION 

100% inspection is the simplest variation reduction approach. We reduce output variation 
by identifying and then scrapping or reworking all items that have values of the output 
beyond selected inspection limits. We illustrate the effect of 100% inspection in Figure 3.8. 
We will scrap or rework (and reinspect) all units with output values outside the vertical 
dashed lines. Assuming no inspection or measurement error, the new full range of output is 
given by the dashed lines. The more the inspection limits are tightened, the greater the 
reduction in variation in the output characteristic. 

In the production of cast-iron exhaust manifolds, a rare defect is a blocked port. The 
defect was not detected until the engine was assembled and tested. The team assigned to 
eliminate the defect had great trouble determining a dominant cause because the defect 
occurred so rarely. The team abandoned the search for the cause and, instead, designed and 
built a new device to automatically inspect all ports on every casting produced. Manage- 
ment agreed that the extra cost of the inspection was justified so that their customers could 
be assured that no manifolds with blocked ports would be shipped. 

In the manufacture of a forced-air furnace, there was an emergency limit switch that 
shut down the furnace if the plenum got too hot. The heart of the switch was a plastic base 
in which a number of components were mounted to detect high temperatures and mechan- 
ically break the circuit. There was 100% inspection of the assembled switches. The scrap 
cost was high because the component and assembly costs could not be recovered from a 
scrapped switch. Using Pareto analysis, the team discovered that the most frequent reason 
for scrapping a switch was a broken tab in the plastic base. They also found that the tab was 
broken before any components were assembled into the base. The team decided to institute 
100% inspection on the bases to scrap those with a broken tab before the components were 
installed. This reduced scrap costs by 50% and more than justified the inspection cost. 

100% inspection is possible if the output characteristic can be determined for every unit 
in advance of shipping the product to a customer. Inspection has a number of negative fea- 
tures. The cost of reducing variation by tightening the inspection limits may be high due to 
increased rework and scrap costs and lost capacity. Also, the cost of inspection may be high 
if a new gage or additional labor is required. The reduction in variation will be less than 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output 

 
Figure 3.8 100% inspection. 
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anticipated if there are measurement or inspection errors. As a result, given the propensity 
of people to make inspection errors, most successful applications use automated inspection. 

Inspection on the output has a negative reputation among quality professionals. How- 
ever, we often apply 100% inspection on a dominant cause. This is called source inspec- 
tion, one form of error proofing (Shingo, 1986). 

 
 
3.7 MOVING THE PROCESS CENTER 

This variation reduction approach is different from the others because we use it to change the 
process center to reduce off-target rather than unit-to-unit variation. We may need to 
move the process center closer to target as in Figure 3.9, or we may need to align sub- 
process centers as in Figure 3.2. 

A team was charged with reducing the amount of shrinkage in a molded plastic casing. 
The casing was part of an assembly, and if there was excessive shrinkage, there was interfer- 
ence between the casing and the enclosed cable. Shrinkage was defined as a percentage 
change in casing length after a fixed curing time. The goal of the project was to reduce the 
average shrinkage. The team selected 15 fixed inputs, both raw material components and pro- 
cessing parameters. They planned an experiment where, for each combination of the input 
values, they measured the average shrinkage in a 500-meter length of casing. The results sug- 
gested two fixed inputs that could be changed to significantly reduce average shrinkage. The 
team did not determine the cause of shrinkage under the original process conditions. 

In another example, a major source of scrap in the casting of aluminum differential car- 
riers was a shrink defect resulting from the aluminum pulling away from the mold as it 
solidified. To reduce the rate of shrink defects, a team invented a five-point score that rated 
carriers from bad (score 1) to good (score 5). The goal was to increase the average score. 
Nine fixed inputs were varied in an experiment to determine levels that maximized the 
average score over 20 carriers. Again, the team made no attempt to determine a dominant 
cause of the shrink defect. 
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Figure 3.9 Moving the process center. 
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To apply the Move Process Center approach, we must discover a fixed input or inputs 
that we can change to shift the process center. Typically, we do this with an experiment in 
which we investigate several fixed inputs simultaneously. 

There are risks associated with adjusting the process center. First, we may not find a 
fixed input that changes the process center and so waste the cost of the experiment. Second, 
changing the fixed input may add expense or produce negative side effects. 

To apply feedback or feedforward control, we need a fixed input that we can change to 
adjust the output center a prescribed distance. We call such an input a process center 
adjuster, or just an adjuster. We use the same tools to find an adjuster or a fixed input to 
move the process center. With the Move the Process Center approach, we hope to make a 
single shift. With feedback or feedforward control, we plan to adjust the process often. 

In many circumstances, we already know of a fixed input that will change the process 
center, but we may need to calibrate the size of the effect in order to target the process prop- 
erly. We can use an experiment to determine the effect of the adjuster. 

For many problems, moving the process center is identical to making the process 
robust. In the shrinkage example, since the output has a physical lower limit of zero, shift- 
ing the average and reducing the variation about zero are the same problem and the two 
approaches are the same. In the shrink defect example, the two approaches are again iden- 
tical. In each case, we are led to look for fixed inputs that we can change to reduce the 
defect rate without finding a dominant cause. 

 
 

Key 
Points 

 

• To reduce variation, we must change fixed inputs. Without changing one or 
more fixed inputs, the process performance will not improve. 

• We consider seven variation reduction approaches: 
1. Fixing the obvious using knowledge of a dominant cause of variation 
2. Desensitizing the process to variation in a dominant cause 
3. Feedforward control based on a dominant cause 
4. Feedback control 
5. Making the process robust 
6. 100% inspection 
7. Moving the process center 

• Finding a dominant cause of variation is an important step in the first three 
approaches. 

• The appropriate choice of variation reduction approach depends on the problem 
definition, the current state of knowledge about the process, and costs. 

 
 
 
 

Exercises are included on the accompanying CD-ROM 



 

I 

 
 

4 
An Algorithm for 

Reducing Variation 
 
 
 

Begin with the end in mind.   
—Stephen Covey 

 

n this chapter we provide an algorithm to address variation reduction problems such as 
those described in Chapter 1. The algorithm is structured around the seven variation 
reduction approaches introduced in Chapter 3. 
We believe that variation reduction problems (or any problems) are best addressed 

using a step-by-step method—that is, an algorithm. There are many advantages to adopt- 
ing an algorithm. Some people and teams are natural problem solvers that can follow 
their own instincts. Most of us can use some guidance. We find the algorithm useful 
because it: 

• Is easy to teach (systematic and structured). 

• Can be managed. 

• Helps to avoid silly mistakes or oversights. 

• Provides documentation of progress and success (or failure). 

• Helps to ensure that all possible solution approaches have been considered. 

• Makes most people, especially when working in teams, better problem solvers. 

On the enclosed CD-ROM, we describe in detail three case studies that are successful 
applications of the algorithm. Here we outline the algorithm and discuss a range of imple- 
mentation issues. In later chapters, we describe each stage in detail. 

 
 
4.1 THE STATISTICAL ENGINEERING VARIATION 

REDUCTION ALGORITHM 

We propose the algorithm given in Figure 4.1 to reduce variation in high- to medium-volume 
manufacturing processes.1 
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Figure 4.1 Statistical engineering variation reduction algorithm. 
 
 

Process managers provide the information necessary to start the algorithm. This infor- 
mation should include a specified process, an improvement goal often expressed in mone- 
tary terms, and a schedule. The managers also enable people to carry out the work. For 
convenience, we refer to these people as the process improvement team or the team for short. 

In the first stage of the algorithm, Define Focused Problem, the team narrows the 
process boundaries and selects the particular output characteristic(s) needed to specify 
the problem. For example, suppose the management statement of the problem is to 
reduce scrap costs for a particular process by 50% within a month. The focused state- 
ment may be to reduce a particular category of scrap, or scrap at a particular processing 
step. The team determines the nature of the excess variation (off-target, unit to unit) 
and establishes an appropriate baseline measure of the process performance. They then 
set a goal for the project in terms of the baseline performance that is consistent with the 
management goal. 

One special feature of Statistical Engineering is the explicit and frequent use of the 
information provided by the baseline investigation. We establish a baseline to help: 

• Set the goal in terms of a particular output. 

• Search for the dominant cause. 
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• Assess the selected variation reduction approach. 

• Validate the solution. 

We cover the Define Focused Problem stage in detail in Chapter 6. 
In the second stage, Check the Measurement System, the team ensures that the measure- 

ment system used for the selected output is not home to the dominant cause of variation. They 
also need to determine if the measurement system is adequate for use in later stages of the 
algorithm. We assess the measurement system by planning and executing an investigation to 
determine how much of the baseline variation can be attributed to the measurement system. 

If we find that the measurement system is the home of the dominant cause of variation 
or is not adequate to support future investigations, we reformulate the problem into a new 
problem to address the variation in the measurement system. We can address this new prob- 
lem with the algorithm. The process of interest is now the measurement system. We pro- 
vide several examples of solving measurement system problems throughout the book. 

We have seen many failures because a team tried to solve a problem without an ade- 
quate measurement system. Less often, we have seen teams become bogged down trying to 
improve a measurement system that is not the home of a dominant cause and is perfectly 
adequate for use in further investigations. We cover the stage Check the 
Measurement System in detail in Chapter 7. 

At the next stage of the algorithm, Choose Working Variation Reduction Approach, the 
team looks ahead to decide how to reduce the variation. We believe that making this step 
explicit distinguishes this algorithm from the many others that have a similar intent. We 
have specified seven approaches to reducing variation, described in Chapter 3. At this stage 
of the algorithm, the team should assess each approach using: 

• The nature of the problem and process 

• The knowledge they have 

• The knowledge required to implement the approach 

• The likelihood and cost of obtaining the required process knowledge 

• The likelihood of successful implementation 

• The probable cost of implementation 

The goal is to select a working approach and then direct efforts to determine if this 
approach is feasible. If it is, the team proceeds to the implementation stage; if not, they 
reconsider the approaches. 

We have divided the approaches into two groups based on whether their implementa- 
tion requires the identification of a dominant cause of variation. The approaches requiring 
the identification of a dominant cause are: 

• Fixing the obvious (Chapter 14): Use knowledge of a dominant cause to 
implement an obvious solution. 

• Desensitizing the process (Chapter 16): Change one or more fixed inputs to 
reduce the sensitivity of the output to changes in a dominant cause. 
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• Implementing feedforward control (Chapter 17): Use an adjustment scheme 
based on measured values of a dominant cause to anticipate and reduce its 
impact on the output. 

The approaches not requiring the identification of a dominant cause are: 

• Implementing feedback control (Chapter 18): Use an adjustment scheme based 
on measured values of the output to anticipate and reduce the impact of future 
changes. 

• Making the process robust to cause variation (Chapter 19): Change one or more 
fixed inputs to reduce the baseline measure of variation. 

• Using 100% inspection (Chapter 20): Use an inspection scheme to select units 
with less variation in the output. 

• Moving the process center (Chapter 15): Change one or more fixed inputs to 
shift the process center. 

The team must decide at this stage if they will search for a dominant cause. If the 
answer is yes, then they proceed with the search. If not, they should look at each of the 
other approaches that are not cause-based and select one. 

In most applications of the algorithm, the team will decide to search for a dominant cause. 
We use the method of elimination to identify this cause. We partition all the causes of variation 
into families and then use process investigations or available data to rule out all families but 
one as the home of the dominant cause (see Chapter 9). We use elimination recursively to 
quickly narrow down the potential dominant causes to one or a few varying inputs. We describe 
a large number of methods to help search for the dominant cause in chapters 9 to 13. 

When the team identifies and verifies a particular input as the dominant cause, they can 
consider the feasibility of one of the three cause-based approaches. If they rule out these 
approaches, they have three options: 

• Reformulate the problem in terms of the dominant cause 

• Reconsider the four non-caused-based approaches 

• Search for a more specific dominant cause 

If we decide to reformulate the problem in terms of the cause, we start the algorithm 
over with the goal of reducing variation in the identified input that is the dominant cause. 
Reformulation corresponds to “moving the problem upstream” or “searching for the root 
cause.” We sometimes reformulate a problem several times. However, eventually we must 
select one of the variation reduction approaches. 

Sometimes a team may reconsider the approaches with only partial knowledge of the 
dominant cause. They may have eliminated many possibilities but not be able to find a spe- 
cific cause. With partial knowledge of a dominant cause, they may find one of the non- 
caused-based approaches more feasible. We describe the Choose Working Variation Reduction 
stage in detail in chapters 8 and 14. 
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At the next stage of the algorithm, Assess Feasibility and Plan Implementation of 
Approach, the team looks at the feasibility of the selected approach. They: 

• Examine the process to see if it meets the conditions for the approach to be 
effective. 

• Determine what further knowledge is required. 

• Plan and conduct investigations to acquire the knowledge. 

• Determine the solution, that is, what and how fixed inputs will be changed. 

• Estimate the benefits and costs of the proposed changes. 

• Look for possible negative side effects. 

We describe assessing the feasibility of each approach in chapters 14 to 20. 
If the selected approach is feasible, the team proceeds to validate and implement the 

solution. Otherwise, they must reconsider other variation reduction approaches. 
We arrive finally at the Implement and Validate Solution and Hold Gains stage. Here 

the team assesses the baseline performance of the changed process to ensure that the proj- 
ect goal has been met. They must also examine other process outputs to make sure they 
have not created a new problem in order to solve the original one. Finally the team imple- 
ments and locks the change into the process or its control plan. We recommend the team 
monitor the process output and audit the process change until they are certain the solution 
is effective and permanent. As well, the team should document what they have learned and 
identify future opportunities to reduce variation further. We discuss the Implement and 
Validate Solutions and Hold Gains stage of the algorithm in Chapter 21. 

 
 
4.2 HOW TO USE THE ALGORITHM EFFECTIVELY 
We have seen the proposed algorithm work well on a large number of projects and fail on 
others. We believe the key drivers to success can be divided into two groups related to 
process and management issues. 

 
Process Issues 

The process needs to be under reasonable control before starting a project using the formal 
algorithm. We once were asked to assess the likelihood of success of a project to reduce 
the amount of rework due to dirt defects on painted bumpers. In a quick walk-through of the 
painting process with a painting expert, we saw fiberglass bats fall off the ceiling onto 
the painting line, paint drips everywhere, operators sweeping in areas with unbaked 
painted parts, and so on. The process was a mess, riddled with poor practices, even to our 
untrained eyes. We suggested there was little value in using the algorithm with this uncon- 
trolled process. Instead, we gave the simple message: 

Fix the obvious! 
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We think that this is an important message both at the start and during any project to 
reduce variation. Many times, we have learned after starting a project that scheduled equip- 
ment maintenance has been abandoned, sometimes for years, or that operators are ignoring 
the control plan for the process, often because no one told them that such a document 
existed. A solution that results from any initial work needed to get a process under control 
may be thought of as fixing the obvious. In general, we expect to apply the algorithm to 
processes where: 

• A control plan is being followed. 

• Equipment is maintained. 

• Gages are calibrated. 

• Personnel are adequately trained. 

• Housekeeping is addressed. 

• Industry standard operating principles (see, for example, Todd et al., 1994) are 
followed. 

Quality standards, such as ISO 9000 (Hoyle, 2001) and QS-9000 (AIAG, 1998) pro- 
vide a mechanism to establish reasonable control. Bhote and Bhote (2000) call this activity 
process certification. We do not require that the process be under statistical control, that is, 
stable as defined in terms of a control chart, to implement the algorithm. See the discussion 
about classifying causes in the supplement to Chapter 2 for more explanation. 

The algorithm is best suited to address chronic problems (long-standing adverse situa- 
tions; Juran and Gryna 1980, p. 99) rather than problems that are sporadic. Sporadic prob- 
lems, where the status quo is suddenly adversely affected, are difficult because they require 
immediate attention and quick solution. Sporadic problems often lead to containment of 
product and a corresponding large cost due to logistics, delay, and lost inventory. In this 
context, applying the proposed stage-by-stage algorithm, with its contemplative nature, is 
likely not an option. The algorithm has no mechanism for containment. However, many of 
the specific tools and methods discussed in this book as part of the algorithm are useful to 
find the cause of a sporadic problem and a solution. 

The appearance of a sporadic problem is sometimes used to initiate a project whose 
goal is to look at both the new sporadic problem and the related long-term chronic problem. 
For example, a sudden large increase in brake rotor balance rejects from 25% to 50% 
prompted a process improvement project whose goal was to reduce balance rejects to less 
than the chronic rate. It is also important to realize that a recurring sporadic problem is best 
thought of as a chronic problem. Firefighting to address sporadic problems is not effective 
in the long run. Using the discipline of the proposed algorithm provides greater assurance 
of finding a permanent solution. 

To apply the algorithm, we need to measure process inputs and outputs in a timely 
fashion. If we are unable to make such measurements, we may not gain the process knowl- 
edge required to move through the stages of the algorithm. In a project to reduce warranty 
costs, the team defined the focused problem in terms of the failure rate of wheel bearings 
within the warranty period of three years. Their goal was to reduce this failure rate from 3% 
to less than 0.3%. The key output is the time to failure of the bearing. Other than historical 
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data stored in the warranty database, the team recognized that it would be difficult to apply 
the algorithm because it takes such a long time to measure the output for any new vehicle. 
To proceed, they decided to replace the time to failure in the field by a surrogate measure, 
the bearing failure time measured under extreme conditions in a laboratory. 

In another situation, a shipping company set out to reduce the frequency of short and 
wrong stock shipments to its only customer. There was a lag of up to six months in the cus- 
tomer’s reporting of shipping errors and little confidence in the accuracy of the reports. The 
long lag meant that these measurements were difficult to use for variation reduction. Before 
the algorithm could be applied, the customer-based measurements were replaced by local 
measurements based on the results of a daily preshipment audit. It was assumed that 
changes to improve the process expressed in terms of the audit results would also improve 
performance for the customer. 

To apply the algorithm, we need a high- to medium-volume process that produces fre- 
quent parts or units. We assume that we can conduct process investigations relatively 
quickly and at low cost. If we cannot do so, then the algorithm is likely to fail or we will 
be very limited in our choice of approaches. In the bearing failure example, each measure- 
ment of failure time in the lab was very expensive, so that it was not feasible to carry out 
many investigations to find the cause of the variation in failure time. The team decided to 
make the process robust, the only feasible variation reduction approach. 

The algorithm is designed to identify low-cost changes to the process or product that 
will meet the goal of the project. We consider the application of the algorithm a failure if 
the team cannot identify a low-cost solution. In some instances, the team has a solution in 
mind (for example, expensive new equipment) and does not consider all of the possible 
approaches at the Choose the Variation Reduction Approach stage. They do not adequately 
consider lower-cost changes such as an improvement to the control plan or a change of 
process setting to desensitize the process to variation in a dominant cause. On the other 
hand, there may be no cost-effective solution. 

We urge you to remember that in most variation reduction problems, the process is cur- 
rently producing a high proportion of excellent output. Because the process does an excel- 
lent job, most of the time, there likely will be a low-cost way to make it even better. 

 
 

Management Issues 

Management makes critical contributions to the successful application of the algorithm. 
Some specific management tasks are to: 

 
• Choose projects and set reasonable goals. 

• Select the process improvement team. 

• Provide a supportive infrastructure (training, time, project reviews, and so on). 

• Conduct or review cost/benefit analyses for any suggested process/product 
changes. 

• Avoid local optimization in the choice of projects and proposed solution. 

• Ensure that organizational learning occurs. 



48 Part One: Setting the Stage 
 
 

 

It is difficult for managers to make good decisions in terms of these points if they do not 
understand the algorithm and how it functions. 

The algorithm is project-based, so we want to focus on projects with the potential to 
have a large impact on customer satisfaction, cost, or both. We know that there are costs 
associated with the algorithm and that the outcome is uncertain. We can use customer sur- 
veys, market research, and warranty data to highlight important customer concerns or 
desires. We need to link customer concerns to process outputs that can be measured at the 
manufacturing site; we can use a tool such as quality function deployment (Revelle et al., 
1998). We can identify good cost reduction or productivity improvement projects by exam- 
ining scrap and rework rates and using Pareto analysis (Juran et al., 1979) to rank possible 
projects. In many cases, other factors will also influence the decision. For instance, manage- 
ment may be planning to update or remove a production process. If such wholesale change 
is imminent, we should not waste resources addressing identified problems for that process. 

When choosing a project (and also later when choosing a potential solution), managers 
must consider the issue of global versus local optimization. Local optimization may occur 
when we have a narrow focus and forget that the process of interest is likely part of a much 
larger system. The output of one process is an input to the next. Reducing variation in an 
output that has little effect on the downstream process is an example of local optimization. 
Goldratt (1992) provides an interesting discussion of the local optimization issue (for 
example, bottlenecks) in the context of cycle times and machine scheduling. 

An example of local optimization occurred in the engine block leak example intro- 
duced in Chapter 1. The team solved the problem of center leaks by adding several chap- 
lets (small steel inserts) to better support the core. This solution reversed a previous process 
change. The chaplets had been removed some months earlier to reduce cost. At that time, it 
was not realized that the cost savings from removing the chaplets would be overwhelmed 
by increased scrap costs. The truck pull problem described in Chapter 1 provides another 
example. The problem was initiated because variation in truck pull is noticeable to the cus- 
tomer. However, pull is a derived output characteristic that depends on other outputs such 
as camber and caster. See Chapter 6 for further discussion. Local optimization would have 
been a concern had management presented the problem as one to reduce variation in cam- 
ber and caster. It turns out that camber variation has little influence on pull (relative to the 
effect of caster). The team could have spent considerable time and effort reducing variation 
in camber, but the (local) improvement would not have been noticeable to the customer. 

The managers must specify the project goal, usually in monetary terms, and provide a 
schedule. Without a goal, the team will not be able to decide if an approach is feasible, or 
when the project is finished. The goal must be reasonable; the use of the algorithm will not 
(often) produce miracles. Resources must be allocated to fit the schedule. A good reference 
on project management is Lewis (2002). 

Teams should include participants with expert knowledge of the selected process. As 
well, the team must include at least one individual familiar with the algorithm and the asso- 
ciated statistical methods. The core team should be relatively small; we recommend one to 
three people. Many others will be consulted as necessary to help with specific tasks. 

Successful teams must have strong management support during the conduct of the 
project. Management must provide team members time away from other duties and help in 
obtaining necessary resources such as testing time. Management can provide training in the 
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use of the algorithm if necessary, can facilitate access to experts, and can provide contacts 
with customers and suppliers as needed. Management should conduct periodic reviews of 
the project to keep the effort focused and to provide a mechanism to terminate the project 
if the likelihood of success appears too small or if costs are too high. 

Management also has a strong role to play in weighing the likely costs and benefits of pro- 
posed solutions. The team can provide a business case to justify any suggested process/prod- 
uct change. Management approval is necessary to authorize and pay for such changes. 

At the conclusion of a project, management must ensure that important lessons learned 
are disseminated throughout the organization. This may involve updating the corporate memory 
by changing design guidelines, and so on. A useful source for information on learning 
organizations is Senge (1990). 

 
 
 
 

Key 
Points 

 

• We present a variation reduction algorithm specifically designed to produce 
low-cost improvements to high- to medium-volume processes. 

 

Define focused problem 
 

 
 

Check the measurement system 
 
 

Choose working variation reduction approach 
 

Fix the obvious 
Desensitize process 
Feedforward control 

 
Feedback control 
Make process robust 
100% inspection 

 
Change process (or subprocess) center 

 
Find and verify a dominant 

cause of variation 
 

Assess feasibility and plan 
implementation of approach 

 
Implement and validate solution 

and hold the gains 

 

 
 
 

(continued) 
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• The Choose Working Variation Reduction Approach stage is designed to force 
the team to consider a wide range of possible solutions in terms of cost, likeli- 
hood of success, and prerequisite process knowledge. 

• Key drivers to the successful application of the algorithm include the proper 
selection and management of projects, the provision of necessary resources 
including people’s time, and training. 

 
 
 
 

Endnote (see the Chapter 4 Supplement on the CD-ROM) 

1. There are many other algorithms for reducing variation and improving process performance. 
The Six Sigma algorithm DMAIC (define, measure, analyze, improve, control) is widely used. 
We discuss a selection of these alternative algorithms and compare them to the algorithm 
proposed here. 
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5 
Obtaining Process Knowledge 

Empirically 
 

There is no substitute for knowledge. 

—W. Edwards Deming, 1900–1996 
 
 
 

ew process knowledge is an essential ingredient to the variation reduction algorithm 
introduced in Chapter 4. Remember, the basis for the algorithm is the idea that we 
can find a cost-effective solution by better understanding how and why the process 

behaves as it does. 
We use an empirical approach to acquire new process knowledge. Empirical means 

derived from experiment and observation. That is, we learn about process behavior by carry- 
ing out investigations (see Box, 1999). We follow a five-step process (we call this process 
a framework to avoid confusion with the process we are trying to improve) to help plan, 
execute, and draw conclusions from such investigations. We refer to the framework by 
QPDAC, an acronym that stands for Question, Plan, Data, Analysis, and Conclusion (Oldford 
and MacKay, 2001). The purpose of each step is: 

Question: Develop a clear statement of what we are trying to learn. 
Plan: Determine how we will carry out the investigation. 

Data: Collect the data according to the plan. 
Analysis: Analyze the data to answer the questions posed. 

Conclusion: Draw conclusions about what has been learned. 

The QPDAC framework highlights the important issues and forces us to think critically 
about the inevitable trade-offs necessary in designing and conducting an empirical investiga- 
tion. At the end of the chapter, we give a checklist of issues that you should address in every 
such investigation. By so doing, you can be assured of solid conclusions at reasonable cost. 
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We expect to apply QPDAC several times in any application of the variation reduction 
algorithm. We need to use empirical investigations to increase process knowledge in most 
of the stages of the algorithm. Examples include: 

• Quantifying the problem baseline (Chapter 6) 

• Assessing the effectiveness of the measurement system (Chapter 7) 

• Finding a dominant cause of variation (chapters 9–12) 

• Verifying the dominant cause of variation (Chapter 13) 

• Determining the feasibility of the variation reduction approaches (chapters 14–20) 

• Validating that the proposed solution has addressed the original problem 
(Chapter 21) 

 
 
 
5.1 QUESTION, PLAN, DATA, ANALYSIS, AND 

CONCLUSION (QPDAC) FRAMEWORK 

In this section, we describe the QPDAC framework in more detail. To make the ideas con- 
crete, we look at an investigation that was part of a project to reduce the variation in the 
diameter of machined aluminum V6 pistons. The manufacturer selected this project 
because the cost of internal scrap due to diameter variation was high. At the Define Focused 
Problem stage of the variation reduction algorithm, the team planned and carried out an 
investigation to establish a baseline measure of process performance. Maximum diameter 
(as the piston was rotated) was measured at a specified height above the skirt of the piston. 

 
Question 

In the Question step, we specify what we are trying to learn about the process. The goal is 
to pose one or more clear questions that we can address in the subsequent steps of QPDAC. 
Without clear questions, it is impossible to determine a good plan and draw appropriate 
conclusions. 

In the Question step, we need to answer the following: 

• To what group of units do we want to apply the conclusions? 

• What input and output characteristics are needed to specify the question? 

• What attributes of the process specify the question? 

• What is the question of interest? 
To introduce some terminology, we call a unit an individual realization (or product) of 

the process under investigation and the target population the group of units about which we 
want to draw conclusions. We sometimes specify the target population in terms of the target 
process that produces the units. 

In the example, to establish a baseline performance measure, the team wanted to learn 
how the piston-making process would behave if it was left to operate normally. A unit was 
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a piston and the target population was all pistons to be produced in the future under the cur- 
rent operating conditions (the target process). 

We use the process language from Chapter 2 that defines input and output characteristics. 
In the example, we are only interested in the diameter of the piston in order to pose the 
question. In more complex investigations, we will specify a number of input and output 
characteristics to help define the questions. 

To state clearly what we are trying to learn, we specify attributes of the target population. 
An attribute is a function of the characteristics over all the units in the target population. In 
the piston example, the team needed an attribute to quantify the output variation in the target 
population. They decided to use the standard deviation of the diameters in this set of pistons. 
Note that none of these pistons had yet been produced. 

Attributes can be numbers such as averages, proportions and standard deviations, or 
pictures such as histograms or scatter plots. We define attributes in terms of one or more 
input and output characteristics.1 In many applications of QPDAC, we formulate several 
questions, so we define several attributes. 

We use the selected attributes to specify the question. In the piston example, to estab- 
lish a baseline measure of process performance, the team asked the specific question: 

What is the standard deviation of the diameters of pistons to be produced in the 
future if we leave the process to operate as it is currently? 

After applying QPDAC, the team was able to provide an answer to this question. They 
then proceeded to look for new ways to operate the process that would reduce the variation. 
This search involved several applications of QPDAC. When they found a promising new 
method of operation, they asked and answered a question about another attribute of the target 
population: 

What is the standard deviation of the diameters of pistons to be produced in the 
future if we operate the process under the new method? 

By comparing the two attributes, the team gained valuable information helpful in making 
the decision about whether or not to change the method of operating the process. The cost of 
the change and potential side effects also entered into the decision. With knowledge of both 
attributes, the team had the process knowledge to make a decision to permanently change the 
operating method. 

In the example, the target population contained a large unknown number of pistons, all 
to be produced in the future. This is the common situation where it is impossible to examine 
each unit in the target population. As a consequence, we will never know the target popu- 
lation attributes exactly. Our goal in the final four steps of QPDAC is to learn enough about 
the attributes of interest, subject to the constraints of time and cost, to make good decisions, 
in spite of the inherent uncertainty. 

The outcome of the Question step is one or more clear questions about well-defined 
attributes of the relevant target population or process. 

 
 

Plan 

In the Plan step, we specify how we will answer the questions generated in the Question 
step. The result of this step is a plan to gather a sample of units, to measure a prescribed set 
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of characteristics on these units, and to store the information collected. To get a detailed 
plan, we need to determine: 

• What are the units and population available for the investigation? 

• How will we select units to be included in the sample? 
• What characteristics of the sampled units will we measure, deliberately change, 

or ignore? 

• For those characteristics that we plan to measure, do we have confidence in the 
measurement systems? 

• For those input characteristics that we will deliberately change, how will we 
make such changes? 

• How will we deal with the logistical issues? 

The study population is the collection of units from which we can choose the sample. 
In the V6 piston diameter example, the team chose the study population to be all pistons 
produced by the process in the next week. That is, they planned to collect the sample over 
the next week of production. 

What were the consequences of this choice? First, the team would take at least a week to 
complete the investigation. Second, if the standard deviation of the diameters of pistons pro- 
duced in the given week was different from the corresponding standard deviation in the long- 
term future (the target population), there will be an error in the conclusions. The team could 
have reduced the likelihood of this study error by extending the time of sampling to a month 
or even longer, but then they would pay a price in terms of time and cost. 

We can only suspect that study error might be present. We cannot quantify the error 
without complete knowledge of all units in both the study and target populations. If we 
have this knowledge, then the investigation is pointless because we already have the answer 
to our question. You should always think about the relationship between the target popula- 
tion and a proposed study population in terms of a trade-off between possible study error 
and cost. Remember that the study population is the set of units from which we will get our 
sample. Even though we cannot quantify the study error, it is clear that some choices of 
study population are much better than others. In the V6 piston diameter example, the team 
would have been unwise to define the study population as the next 100 pistons to be pro- 
duced, since it is likely that a dominant cause may take longer to vary over its normal range. 

In most applications of QPDAC, it is not feasible to examine every unit in the study 
population because of cost and time constraints. Rather, we collect a sample of units using 
a sampling protocol. The sampling protocol specifies how we select the sample and how 
many units we choose. The goal of the sampling protocol is to produce a sample of units 
with attributes that match those of interest in the study population. We define sample error 
as the difference between the sample and the study population attribute. We cannot deter- 
mine the sample error because we do not know the attribute in the study population. 

We have numerous choices for a sampling protocol, including random sampling, hap- 
hazard sampling, systematic sampling (for example, sample every 10th unit), and conven- 
ience sampling (take what we can get).2 When specifying a sampling protocol, we need to 
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balance cost and convenience against possible sample error. For a given sampling method, 
larger sample sizes are more likely to yield a smaller sample error. However, it is more 
expensive to gather and deal with larger samples. 

In the V6 piston manufacturing process, about 10,000 pistons were produced per day 
for five days in the week. The team decided to commit resources to collect a sample of 500 
pistons. The issue of sample size is a difficult one, and the choice is usually driven by 
resource considerations. For convenience, the team decided to use a systematic sampling 
protocol in which they would pick every 100th piston. They expected such a sample to give 
a good representation of the week’s production. That is, they thought the standard deviation 
of the diameters of the sampled pistons would be close to that of all the pistons produced 
over the week. In other words, they expected little sample error. 

Next we decide what characteristics of the sampled units to measure, to ignore, or to 
change. We must measure or record any input or output characteristic used in the definition 
of the attribute of interest. However, it is often advantageous to measure additional character- 
istics. In the V6 piston diameter baseline investigation, for very small cost, the team recorded 
the time at which each piston in the sample was measured. They hoped that the pattern of vari- 
ation of diameter over time would give valuable clues to be used later in the problem solving. 

We typically ignore most characteristics of the sampled units; this is a conscious 
choice. In the V6 piston diameter example, the team decided to record the diameter, the 
time, and the day of measurement and to ignore all other input and output characteristics. 
They made this choice because of the question of interest. However, as a general rule, if 
there is little cost involved, we should record other inputs and outputs, especially if we have 
automated measurement and data collection systems available. We may be able to use these 
data later in the variation reduction algorithm. 

In the Plan step, we specify how we will measure the selected output and input charac- 
teristics on the sampled units. The gages, operators, methods, materials, and environment 
all make up the measurement system. The difference between the measured and true value 
is called measurement error. Due to measurement errors, the attribute calculated using the 
measured values of the sampled units might differ from that using the true values. We need 
to worry about the contribution of errors from the measurement system to the overall error. 

In some investigations, we deliberately change an input characteristic on one or more 
units in the sample to understand the effect on the output characteristic. If no input charac- 
teristics are deliberately changed, we call the plan observational. The plan to determine the 
baseline performance of the piston process was observational since the team did not delib- 
erately change any inputs as the sample pistons were collected. Of course, many inputs 
changed from piston to piston in the sample. The key point is that the team let these 
changes occur naturally and did not deliberately manipulate any input. 

If we deliberately change one or more input characteristics on the sampled units, we 
call the plan experimental. For example, as part of a project to reduce the proportion of 
steel stampings that rusted during shipping, a team specially oiled a number of stampings 
and shipped these parts in the same crates as stampings that were not oiled. The team hoped 
to show that the oiling significantly reduced the frequency of rusting. This was an experi- 
mental plan. The oiling procedure would not have happened without deliberate intervention. 
In Chapter 13, we look at the details of experimental plans, which are often called designed 
experiments. 
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We require an experimental plan for many questions, such as the previous example 
regarding the effect of oiling on rust. To investigate the effects of fixed inputs that do not 
normally vary, we must intervene and change them. Such interventions can cause difficulty 
in the production process. For other questions, we may have a choice between an experi- 
mental and observational plan. Where possible, we use observational plans because they 
have the major advantage of not disrupting the current operation of the process. Also, observa- 
tional plans are usually cheaper to conduct than experimental plans. 

A final task in the Plan step is to organize the logistics of the investigation. This can be 
nontrivial, especially for complex plans. We must consider who, how, where, and when as 
related to the investigation. For example, we must decide who will collect the sample of 
units, make the appropriate measurements, and record the data. We must take care to ensure 
that everyone involved knows what they are supposed to do and that everyone not directly 
involved knows what they are not supposed to do. 

In the V6 piston diameter example, imagine the confusion generated if someone had 
decided to make an unexpected change (that is, change a fixed input) to the process during 
the week in which the team was collecting the sample. Remember the question: 

What is the standard deviation of the diameters of pistons to be produced in the 
future if we leave the process to operate as it is currently? 

If the fixed input had been changed in the middle of the sampling period, the team 
would have little confidence in the conclusions from their investigation. Worse, they may 
not have known that such a change was made. 

We have also seen the opposite problem. A team took great care to explain that they 
were collecting data to establish a baseline and that no process changes should be made. 
The operators took the team at their word and ignored the adjustment procedure in the con- 
trol plan until a supervisor noticed that a large number of out-of-specification parts were 
produced. The team had failed to explain that the current control plan was part of the 
process and was to be executed as usual. 

If the plan is experimental (that is, involves deliberate changes to the process), we must 
make all interested parties aware of what is happening since we may put customers at risk. 
The changes may have unexpected consequences, and we must take special care if we plan 
to ship the product produced during the experiment. 

Part of the logistics is to plan for data storage and processing. For small investigations, 
we can write down the measurements as they are made. Usually we want to store the data 
electronically for processing. We recommend a row/column spreadsheet format, where each 
row represents a different unit and each column represents a different characteristic, as 
described in Appendix A. 

The output of the Plan step is, not surprisingly, a detailed plan for carrying out the 
investigation. In most applications of QPDAC, we consider all the substeps in the plan but 
not necessarily in the order that they are presented here. As well, we often iterate among the 
substeps. Sometimes, in the middle of the planning, we are forced back to the Problem step 
to clarify the question being asked. 

In Figure 5.1, we summarize the connections among the target population and the data 
and show where errors can occur. Our task is to create a plan that is not too complex or 
expensive and yet controls the potential errors.3 
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Figure 5.1   Target population to data. 
 
 
 

Data 

In the Data step, we execute the plan and collect the data. This is often the most time- 
consuming and costly part of the investigation. This is especially true for those investiga- 
tions where we paid little attention to the plan, since there is a great opportunity for things 
to go wrong. In the Data step, we also record any deviations from the plan. 

In the example, the team measured 469 pistons and recorded the diameter, day, and 
hour of measurement. The data were recorded in production order. We give only the last 
three digits of the diameters in microns. The diameter is measured in millimeters and the 
deviation from 101 millimeters is multiplied by 1000 before being recorded. The process 
did not operate on the last part of the shift on day four. The data from the piston baseline 
investigation are stored in the file V6 piston diameter baseline. 

 

 
 

Analysis 

The goal of the Analysis step is to use the data to answer the question(s) posed in the Ques- 
tion step. 

For most of the investigations discussed in this book, we use simple numerical and 
graphical summaries. However, we also consider some more advanced statistical analysis 
techniques provided by MINITAB. We introduce these analysis methods and tools as 
needed in subsequent chapters. 

The standard deviation of the sample data in the V6 piston diameter example is 3.32 
microns. In Figure 5.2, we show a histogram and run chart of the sample piston diameters. 

By plotting the data in several ways, we can detect unusual values (outliers). There is 
a concern, because many of the numerical attributes such as the average and standard 
deviation are sensitive to outliers. As a result, any outliers that greatly affect the calcu- 
lated attributes should be identified.4 When outliers are present, great care must be taken 
that the conclusions drawn from the investigation are truly representative of the target 
population. 
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Figure 5.2 Histogram and run chart of V6 piston diameter. 

 
 

Conclusion 

In the Conclusion step, we answer the questions posed about the target population attri- 
butes of interest. We also discuss limitations of the answer due to possible errors, both as 
envisaged in the Plan step and due to deviations from the plan in the Data step. In thinking 
about errors, remember the three types: study error, sample error, and measurement error. 

We use the results from the conclusion step to help us decide what to do next. We need to 
interpret the conclusion and the associated risk of error in the context of the variation reduc- 
tion algorithm and the problem itself. To do so, we use basic understanding of the operation 
of the process, appropriate theory, and knowledge gained in earlier empirical investigations. 

In the V6 piston diameter baseline investigation, the estimated process standard devia- 
tion was 3.32 microns, which served as a baseline measure of process performance against 
which the team eventually assessed the effectiveness of deliberate process changes. The 
team was confident that the estimated standard deviation was a good representation of the 
long-term variation in the current process, because their experience with the process sug- 
gested that in one week, most of the (important) varying inputs that could have changed 
would have changed. In addition, because of the well-designed plan, they expected that 
sample error would have little impact. 

They specified the numerical goal for the project in term of the estimated standard 
deviation and decided to proceed to the next stage of the variation reduction algorithm. 

 
 
5.2 EXAMPLES 

Here are two more examples to help reinforce the ideas and language of QPDAC. 
 

V6 Piston Diameter: Comparing Two Measurement Systems 

In the process to make V6 pistons, there were gages for measuring the diameter at Operation 
270, the last grinding operation, and at Operation 310, final inspection (see Figure 5.3). 
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Figure 5.3   Part of a V6 piston machining process. 
 
 

Operators used the measurement system at Operation 270 to control the two grinders that 
operate in parallel. The gage at final inspection operated in a controlled temperature environ- 
ment. Every piston was inspected to ensure that the diameter and several other characteris- 
tics were within specification. 

During an application of the variation reduction algorithm, the team decided to investigate 
the relationship between the two measurement systems to help understand the causes of 
diameter variation at Operation 310. 

The team defined a unit to be the act of taking a measurement on a piston. The target 
population was the set of all such acts that would occur in the future under current conditions. 
The output characteristic was the measured diameter. One key input was the measurement 
system used. 

To define an attribute useful for comparing the two measurement systems, think of 
measuring the same piston twice, once with each measurement system. Repeat this over all 
possible pistons and times (here we think of doing this only conceptually since the number 
of possible pistons and times is very large). Finally, plot the measured diameters from 
the Operation 270 gage against the corresponding measured diameter from the final gage. 
The scatter plot (the attribute of interest) might look like Figure 5.4. Note that the closer the 
plotted points fall to the 45° line shown on the plot, the better the agreement between 
the two systems. A point on the line corresponds to equal measured diameters by both systems. 
Of course, the scatter plot might be very different from the one that is shown. 

The specific question was to estimate the scatter plot and determine some of its 
properties. 
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Figure 5.4 Hypothetical target population scatter plot comparing two measurement systems. 
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The team decided to carry out the investigation the following day. Every hour, the oper- 
ator at Operation 270 measured four pistons, two from each of the parallel grinders. A des- 
ignated team member marked these pistons so that they were uniquely identified, recorded 
the measured diameter, and set the four pistons aside. After six hours, he removed the pistons 
to the final gage room and let them come to ambient temperature. During the next shift, 
the final gage operator measured the 24 pistons and recorded the diameters. 

We use the language introduced in the previous section to examine this plan in detail. 
What is the study population? Measurements could be made on one day. As well, only the 24 
selected pistons could be measured with both gages. There is a possibility of study error if the 
relationship between the two systems changed over time (day to day) or was dependent on the 
nature of the pistons being measured. To help control this source of study error, the team 
made a good decision to use pistons from both Operations 270A and 270B. 

The sampling protocol specifies which units (acts of making a measurement) will be 
selected from the study population. Here, the team decided to use 24 pistons and measure 
each twice at specified times. We can criticize the step in which all 24 pistons were measured 
by the final gage over a short time. There may be sample error if the 24 pairs of diameters did 
not represent the relationship between the two gages on the day of the investigation. In terms 
of sample error, the team could have improved the plan by making the measurements with the 
final gage throughout the day. 

For each piston, the team recorded the diameter from both gages, the time of measure- 
ment and the process stream (A or B) at Operation 270. They ignored all other process 
characteristics such as other dimensional and physical properties of the pistons, the ambi- 
ent temperature at Operation 270, and so on. The team did not change any inputs, so this 
was an observational plan. 

Since this was an investigation of the measurement systems, there was no need to consider 
the issue of measurement systems separately. 

The logistics of who does what and when were well organized, since one person was 
assigned responsibility for executing the plan and storing the data in row/column format in 
a spreadsheet, convenient for subsequent analysis. 

The team executed the plan without difficulty. They collected and stored the data in the 
file V6 piston diameter gage comparison. 

The analysis consisted of simple numerical and graphical summaries of the data. We 
show a scatter plot of the pairs of measurements from the sampled units in Figure 5.5 and 
give the average diameter by gage over all 24 pistons in Table 5.1. 

 
 

Table 5.1   Piston gage comparison 
results. 

Gage Average diameter 
Operation 270 589.63 

Final 591.14 
 

The team concluded there was a strong relationship between diameters measured on 
the two gages. However, the final gage gave a measured diameter that was systematically 
higher by about 1.5 microns on average. The difference was small but unexpected. The 
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Figure 5.5   Scatter plot comparing sample diameters at the final and Operation 270 gages. 

 
 

team later explained the difference when they discovered that steel, not aluminum, masters 
were used to remove the effect of temperature changes from the Operation 270 gage. 

The team’s only reservation was that the investigation had been limited to one day and 
there was some concern that the systematic difference between the two gages might 
become larger on a hotter day. 

The team used the knowledge gained to recommend a new calibration procedure for 
the Operation 270 gage. 

 
 

Painted Fascia Ghosting 

In the painting of two color plastic fascias (the cover over a car bumper), the black prime 
coat was applied to the whole part. Next, some of the black area was masked with paper 
taped to the fascia, and then the color coat was added. When the masking was removed, 
there was occasionally a residual pattern, called ghosting, on the matte black surface under 
the tape. See the process map given in Figure 5.6. 

Customers could detect ghosting since the black surface of the fascia was prominent. 
The plant could rework the surface to remove the ghosting with added cost and lost production. 
Management assigned the process engineer the task to eliminate the ghosting problem that 
occurred on about 3% of the fascias. 

The engineer followed the Statistical Engineering algorithm. The process operators 
visually judged ghosting on a scale of 1 to 5 (1 = no ghosting, 5 = heavy ghosting). The plant 
reworked fascias with a ghosting score greater than 2 and reluctantly shipped those with a 
score of 2. The engineer carried out a small investigation to verify that the measurement sys- 
tem was repeatable; that is, the operators were consistent in their assessment of ghosting. 
Next, after several QPDAC applications, she was convinced that the cause of the problem 

 
 
 

Inspection 
 
 

Figure 5.6 Fascia molding and painting process. 
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was some environmental factor such as ambient temperature or humidity that changed 
from day to day and could not be easily controlled. More ghosting problems seemed to 
occur on hot, humid days. She also knew that the ghosting appeared under the tape during 
the baking of the color coat and that the problem seemed more frequent with certain 
colors. Two other tape suppliers claimed that their products would not produce ghosting. 
She decided to investigate whether the other sources of tape were robust to the effects of 
the environmental factors and color. In the jargon of the variation reduction algorithm, she 
chose the Desensitize the Process approach. The engineer decided to carry out an experi- 
mental plan to compare the performance of the current tape, here denoted C, against the 
two other possibilities, A and B. 

A unit was a fascia and the target population was all fascias to be made in the future. 
The output characteristic was the degree of ghosting and the key input characteristic was 
the type of tape used to mask. The three attributes of interest were the proportions of fas- 
cias with ghosting level 1 if the tape type was A, B, or C. The three questions of interest were: 

What is the proportion of fascias in the future production with score 1 if tape A [or 
B or C] is used? 

The engineer knew that she required an experimental plan since the tape type was a fixed 
input that could not change without intervention. Because of the high cost of scrap, she 
decided to use fascias that had been scrapped upstream of the masking operation for her 
study population. She also decided to use only those fascias produced on a hot, humid day 
and to paint these fascias with the color having the most frequent ghosting problem. Fur- 
thermore, she planned to mask three small areas, labeled I, II, and III on the primed surface 
on both sides of each fascia with the three different tapes. See Figure 5.7. 

The study unit was one of the small areas on the scrap fascia. The study population was 
all such units available on the selected day. The study units and conditions under which 
they were processed were very different from the target population. There was likely to be 
study error because the conditions were selected to be extreme, so the degree of ghosting seen 
in the investigation was likely to be high. As well, the engineer knew that she was unlikely 
to get a large number of scrap fascias for her investigation, so she expected a relatively 
small sample size. 

Accordingly, she decided to revisit the Question, which was changed to the following: 

Under extreme conditions, what is the average ghosting score for tapes A, B, and C? 
 
 
 
 
 

  
Right side 

    
Left side 

 

I II III 
 

I II III 

 
 

Figure 5.7 Schematic of the study units. 
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Note that these new questions involved averages, not proportions. The engineer thought 
that if one tape performed better on average in the extreme conditions, then this tape was 
likely to produce a higher proportion of fascias with score 1 in the future. 

Going back to the Plan step, she decided to use all available scrap fascias (with a max- 
imum of 15) produced on one day. She would choose the day based on a weather 
forecast. She planned to record the fascia number, the side, the position, the tape 
type, and the ghosting score for each unit in the sample. She had already established a 
reliable measurement system for ghosting. 

Since this was an experimental plan, she had to decide how she was going to select 
which tape was applied to each unit. Her plan was to use all three tapes on both sides of each 
fascia available. Within a side, she would assign the tapes to the three positions at random. 

The logistics were critical to the success of the plan. The engineer involved an operator 
to decide how to mask the small areas. She carefully labeled the tapes to avoid confusion. 
She prepared 15 schematics like Figure 5.7 that showed which tape went on each position. 
She planned to give these schematics to the operator one at a time to help him use the cor- 
rect tape to mask each area in the sample. She would identify each fascia with a number 
and write it on the schematic. When the operator assessed ghosting, he could write the 
score on the sheet above each box. 

She notified the process owners of the plan to ensure that the experimental fascias 
would be set aside after painting and to avoid interference with normal production proce- 
dures. A time to run the experimental parts could be set up once the day was selected. 

The plan was executed without any hitches. Twelve fascias were processed and a total 
of 72 ghosting scores were recorded. The data were transferred from the schematics to the 
file fascia ghosting robustness. Table 5.2 is a summary of the data collected. 

 
 

Table 5.2   Summary of ghosting scores. 
 

 Ghosting score  

Tape 1 2 3 4 5 Average 

A 16 7 1 0 0 1.375 

B 5 9 7 2 1 2.375 

C 7 9 6 2 0 2.125 
 

Under the extreme conditions of the plan, tape A was clearly superior with a much 
lower average score. All but one area had a score of 1 or 2. The major limitation was study 
error; it was possible that tape A would not perform better than tapes B or C under normal 
operating conditions. 

The engineer validated the performance of tape A under normal operating conditions 
with another application of QPDAC. Since the costs of the three brands of tape were sim- 
ilar, management accepted the engineer’s recommendation to switch to tape A. In the 
longer term, the proportion of fascias with any detectable ghosting (score >1) fell to less 
than 0.3%. 
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5.3 SUMMARY 

We summarize the terminology used within QPDAC as follows: 
 
 

 
QPDAC Terminology 

 
Term 

 
Meaning 

Attribute Numerical or graphical summary of the characteristics over a 
 collection of units 

Experimental plan Plan where some inputs are deliberately changed on the sample 
 units 

Measurement error Difference between the measured and true value of a characteristic 

Measurement system Gages, people, methods, material, and environment involved in 
 measuring a characteristic 

Observational plan Plan where all inputs vary naturally on the sample units 

Sample Units selected from the study population and measured in the 
 Data step 

Sample error Difference between the attribute in the study population and sample 

Sampling protocol Procedure by which the sample is selected from the study 
 population 

Study error Difference between the attribute in the study and target populations 

Study population Collection of units available for investigation 

Target population Collection of units produced by the target process that we want to 
 draw conclusions about, usually all units produced now and in the 
 future 

Unit A part or the act of making a measurement 

 
 

None of the individual steps or substeps in QPDAC is difficult. However, pitfalls 
abound. 

In the V6 piston diameter example, the team first established the baseline measure 
of process variation by measuring the diameters of 50 pistons produced consecutively. 
The estimated standard deviation was 2.27, suggesting a highly capable process. There 
seemed to be little reason to carry on with the project. However, everyone involved 
knew that the process needed improvement. The team had given little thought to the 
notions of the target and study population or the sampling protocol. Local management 
recognized the problem and the baseline investigation was redesigned as described in 
Section 5.1. 

Here we provide a checklist for the major steps and substeps for any empirical 
investigation. Make sure you consider each substep as you plan and execute a process 
investigation. 
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A Checklist of Questions for Each Step of QPDAC 

 
Question What are the units? 

To what population of units will the conclusions apply? 
What characteristics are involved in the question? 
What attributes of the target population make up the question? 
What question(s) need to be answered? Be specific! 

 
Plan What units might be included in the investigation? 

How well does this study population match the target population? 
How will the sample of units be collected? 
How well is the sample likely to match the study population? 
What characteristics will be measured/ignored? 
Are all the necessary measurement systems adequate? 
What input characteristics (if any) will be deliberately changed? 
How will changes be made? 
Who will carry out the plan? 
Who needs to know that the investigation is being conducted? 
How will the data be stored? 

 
Data Was the plan executed as expected? 

What deviations occurred? 
Are the data stored as expected? 

 
Analysis What are the sample attributes? Draw a picture if possible! 

Are there any unusual patterns (e.g., over time) of concern in the 
data? 

Are there any unusual values (outliers)? 
 

Conclusion Has the posed question(s) been answered? 
Are any of study, sample, or measurement errors likely to be large 

enough to affect future decisions? 
 
 
 

Key 
Points 

 

• We use the QPDAC (Question, Plan, Data, Analysis, and Conclusion) 
framework to carry out empirical investigations to increase our knowledge 
of the process. 

• With careful use of the QPDAC framework, we can avoid or control study, sample, 
and measurement errors and generate the process knowledge required for the 
variation reduction algorithm. 

• We expect to apply the QPDAC framework several times in any application of 
the variation reduction algorithm. 
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Endnotes (see the Chapter 5 Supplement on the CD-ROM) 

1. We can use simple attributes such as averages, rates, standard deviations, histograms, and run 
charts to establish baselines in the Define Focused Problem stage of the variation reduction 
algorithm. In the supplement to this chapter we describe some other more complex attributes. 

2. There are many different sampling protocols. The most famous, random sampling, plays a 
small role in the variation reduction algorithm given here. In the supplement, we look at the 
ramifications of choosing among different sampling protocols. 

3. We show the nature of the possible errors in empirical investigations in Figure 5.1. Remember 
that we want to answer questions about attributes of the target population/process using 
measured values of characteristics in the sample. In the supplement, we describe study, sample, 
and measurement errors in more detail. 

4. Outliers can have a large influence on the conclusion drawn from an investigation. In the 
supplement we explore the effect of outliers and describe methods for their identification. 

 
 
 
 
 
 
 

Exercises are included on the accompanying CD-ROM 
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PART II 
Getting Started 

 
 

If you know a thing only qualitatively, you know it no more than vaguely. If you know 
it quantitatively—grasping some numerical measure that distinguishes it from an 
infinite number of other possibilities—you are beginning to know it deeply. 

—Carl Sagan, 1932–1996 
 

n this second part of the book, we explore the first three stages of the variation reduction 
algorithm: Define Focused Problem, Check the Measurement System, and Choose 
Working Variation Reduction Approach. We require a quantitative goal for the problem 

and the full extent of variation of the output to help design and analyze investigations con- 
ducted in the search for a dominant cause or a solution, and to check that a proposed solution 

meets the problem goal. Next, we look at how to assess and improve measurement systems. 
A measurement system is necessary to support all process investigations and may itself be 
a dominant cause of variation. Finally, we discuss how to choose a working approach 
among the seven variation reduction approaches. In any application, this choice is important 

because it determines what we do next. 
 

 
Define focused problem 

 

 
 

Check the measurement system 
 
 

Choose working variation reduction approach 
 

Fix the obvious 
Desensitize process 
Feedforward control 

 
Feedback control 
Make process robust 
100% inspection 

 
Change process (or subprocess) center 

 
 

Find and verify a dominant 
cause of variation 

 
Assess feasibility and plan 

implementation of approach 
 

Implement and validate solution 
and hold the gains 

 

Statistical Engineering variation reduction algorithm. 
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6 
Defining a Focused Problem 

 
 
 

Our plans miscarry because they have no aim. When you don’t know what 
harbor you’re aiming for, no wind is the right wind. 

—Lucius Annaeus Seneca the Younger, 4 B.C.–A.D. 65 
 
 
 

here are two major tasks in the Define Focused Problem stage of the Statistical Engi- 
neering algorithm. First, the team must translate the project and its goal into a prob- 
lem statement about excessive variation in a measurable output characteristic. The 

problem should be specific so that it is likely that there will be only one or two dominant 
causes. Second, the team must quantify the magnitude of the problem. We require this base- 
line measure to: 

• Help set the goal for the problem. 

• Help design investigations and interpret the results as we proceed through the 
algorithm. 

• Allow validation that the problem has been solved. 

The baseline is important in all subsequent stages of the algorithm. 
 
 
6.1 FROM A PROJECT TO PROBLEMS 

We start many applications of Statistical Engineering with a project defined in vague terms, 
and a goal specified in terms of dollars or customer concerns. In Chapter 1, we discussed 
the block leakers project, where the goal was to reduce the scrap rate of engine blocks that 
leaked after machining. The management of the foundry assigned a team to reduce cost and 
improve the relationship with the engine plant, their direct customer. The goal of the project 
was to reduce the scrap rate from more than 4% to less than 1%. 
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The team started by turning the project into three problems. The engine plant inspected 
every block for leaks using a pass/fail test. The team instituted a new test for failed blocks 
that determined the location of the leak. Using a sample of 100 leaking blocks, they found 
that 92% of the leakers fell into three classes based on the location of the leak, as shown in 
Table 6.1. 

 
 

Table 6.1   Leak classification for 100 leaking 
blocks. 

Class of leak Percent 
Center 32 

Cylinder bore 26 

Rear intake wall 34 
Other 8 

 
 

The team suspected that each class of leak would have its own dominant cause. Hence 
they defined three problems based on the three classes. In each case, they set the ambitious 
goal of eliminating the entire leak class. If they could achieve these goals completely, they 
would far surpass the project goal. 

Some projects are defined in terms of processes that are replicated at different sites or 
in terms of a class of products. We may choose to focus the problem by concentrating on a 
single product or manufacturing line. In the truck alignment problem described in Chapter 
1, several assembly plants built the same truck using the same components and assembly 
process. To concentrate resources, upper management assigned the project to a team in one 
plant. The idea was to apply the same solution to all plants. 

In specifying a problem, we may need to define an output characteristic that can be 
measured locally. A team at an engine assembly plant was charged with reducing warranty 
claims due to excessive oil consumption. There were only a few claims, but the plant man- 
agement initiated the project because of the potential damage to the long-term reputation 
of the engine. To define a specific problem, the team first spent considerable time and effort 
developing a dynamometer test that could reproduce in the lab the failure mode seen in the 
field. This effort was necessary because the field failures were so rare. The team specified 
the problem in terms of the dynamometer measurement. They were confident that if they 
could reduce oil consumption in the dynamometer test that they could eliminate the field 
failures. 

We try to specify the problem in terms of a continuous output to improve the effi- 
ciency of the problem solving. If we use a discrete output, such as pass/fail, we require 
larger sample sizes for all of the subsequent investigations. For example, in the engine 
block porosity project described in Chapter 3, the project goal was to reduce the scrap 
rate from about 4% to below 1%. The team invented a new output, a porosity score based 
on the size, location, and number of holes on the surface. A block that was scrapped had 
a high score, but more importantly for the problem solving, every block could be assigned 
a porosity score that reflected the severity of the problem on a continuous scale. The team 
defined the problem goal in terms of reducing the variation in the porosity score. 
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We need to be careful defining the output. For instance, in a problem with seat cover 
appearance, the team measured shirring on a six-point scale using boundary samples. 
Scores of 1 to 4 were acceptable, and high scores came from either too much or too little 
shirring. With shirring score defined in this way, the team found it difficult to find a domi- 
nant cause of shirring variation, because both high and low values of the cause led to high 
scores. The choice of output forced the team into the Make Process Robust approach, 
which failed. See the Chapter 19 exercises for further details. 

We need to be able to measure the output characteristic quickly. We sometimes aggra- 
vate or accelerate the usage conditions so that the problem occurs sooner. In the oil con- 
sumption example, the team created a dynamometer test with aggravated conditions in an 
attempt to quickly simulate use of the engine under extreme field conditions. There can be 
considerable difficulties linking the original management project goal to a goal for the out- 
put measured using an aggravated or accelerated test. We want to avoid study error where 
the cause or the solution of the problem under the aggravated conditions is not the same as 
under the normal conditions. To avoid study error, we need to check that the field failure 
mode can be replicated using the aggravated test. 

We can sometimes use aggravation to deal with a problem with a binary output. For 
example, in a painting process, there were line defects on the roof of about 10% of the 
vehicles painted. The team used panels with an increased clear coat film build to make 
the defect occur more often. Using the panels under the aggravated conditions, they felt 
they could find clues about the dominant cause more quickly since the defect occurred 
more often. This advantage had to be balanced against the risk that the dominant cause 
of line defects on panels with increased clear coat film build (that is, under the aggra- 
vated conditions) was not the same as the dominant cause of lines on vehicle roofs with 
the normal clear coat film build. 

To illustrate the transition from a project to problem(s), consider a project to reduce 
scrap in a process that produced piston rods. Based on past performance, the monthly scrap 
rate averaged 3.2%. Management set a goal of reducing the rate to less than 1.6%. We show 
a finished rod in Figure 6.1. 

 
 
 

 
 

Figure 6.1 A connecting rod. 
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Looking at process records, the team found that scrap occurred at several processing 
steps. To focus the problem, they used Pareto analysis on the records from one month, as 
shown in Figure 6.2. They found that 62% of the scrap was identified at a grinding operation. 
Further investigation revealed that about 90% of the grinding scrap was due to undersized 
rods. After grinding, the thickness was measured on every rod at the four locations, marked 
(with small white circles and faint numbers) in Figure 6.1. A rod was scrapped if the thick- 
ness at any location was below the lower specification limit. Rods with thickness above the 
upper specification limit were reworked. The team focused their attention on reducing 
variation in rod thickness, a continuous output. 

The team set the problem goal to produce all rods within the thickness specification. 
Achieving this goal would eliminate 90% of the scrap at the grinder, or 56% (90% of 62%) 
of the total scrap, and hence meet the project goal. 

In summary, the key elements in focusing a project to one or more problems are: 

• Identify and address the most important failure modes. 

• Replace a binary or discrete output characteristic by a continuous one, if possible. 
• Define the problem in terms of an output that can be measured locally and 

quickly. 

• Choose the problem goal to meet the management project goal. 
If multiple problems arise from a single project, we recommend that the team address 

the problems one at a time. We need to be careful that, in improving the process with 
respect to one output, we do not make it worse with respect to another, unless the gain out- 
weighs the loss. 

We find it helpful to think about what, where, when, and to what extent the problem 
exists. We can use a Pareto analysis to help focus the project to a problem that is both nar- 
rowly defined and a major contributor to the concern that generated the original project. 
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Figure 6.2 Pareto chart for rod scrap by operation. 
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Figure 6.3 Hierarchy of project, problems, and questions. 

 
 
 

Figure 6.3 shows the hierarchy we propose to define projects, problems, and questions. 
Company management initiates projects using concerns regarding quality and cost. The 
improvement team focuses the project into one or more problems. The team then attacks 
each problem using the Statistical Engineering variation reduction algorithm given in 
Chapter 4. In each application of the algorithm, the team will ask many questions about the 
process behavior. They address these questions using the QPDAC framework described in 
Chapter 5. 

 
 
6.2 THE PROBLEM BASELINE 

The problem baseline, also called the baseline, is a numerical or graphical summary of the 
current process performance. In the language of QPDAC, the baseline is an attribute of the 
process operating under current conditions. We select a baseline and estimate its value or 
appearance in the Define Focused Problem stage. 

We specify the problem goal by stating how the baseline should be changed. At the Val- 
idate Solution and Hold the Gains stage of the variation reduction algorithm, we recalcu- 
late the baseline with the changes to the fixed inputs to demonstrate the improvement and 
to determine whether or not we have met the problem goal. If we have focused the problem, 
we should be able to translate the change in baseline to progress toward the overall project 
(management) goal. 

We can choose among many attributes for a baseline. If the output that defines the 
problem is continuous, we may use the average, the standard deviation, a capability ratio 
such as Ppk (see Chapter 2 supplement), a histogram, or a run chart, among many others. 
For a binary output, we use a rate or a series of rates taken over time, often plotted on a run 
chart. We summarize the choices in Table 6.2. 

We prefer not to use a capability ratio such as Ppk since it combines the average and the 
standard deviation. We use different approaches to change the process center and to reduce 
unit-to-unit variation, so we prefer to address two problems when we need to change the 
process center and reduce variation in the output. 
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Table 6.2   Problem types and corresponding baseline measures. 
 

Problem type Possible baseline measures 

Too much scrap or rework Proportion of scrap or rework, run chart of 
proportion scrapped 

Process center off target Average 

Unit-to-unit variation too large with two-sided 
specifications 

Standard deviation, histogram, Ppk 

Unit-to-unit variation too large with one-sided 
specifications 

Average, standard deviation, histogram, one-
sided Ppk 

Measurement Measurement variation and bias 
 

In the rod thickness example, the team selected a histogram with specifications limits 
as the baseline. See Figure 6.4. We discuss the investigation to produce this histogram in 
the next section. The team set the problem goal to reduce variation in thickness so that the 
histogram would fall entirely between the specification limits 10 to 60. 

The data are found in the file rod thickness baseline. The height was recorded in thou- 
sandths of an inch, measured as the deviation from 0.900 inches. The summary is: 

 

Variable N Mean Median TrMean StDev SE  Mean 
thickness 800 34.575 36.000 34.840 11.023 0.390 

 

Variable Minimum Maximum Q1 Q3 
thickness 2.000 59.000 28.000 43.000 

The standard deviation in the baseline investigation was 11.0. Since the process is roughly 
centered and the histogram is bell-shaped, the team needed to reduce the standard deviation 
by about 25% so that six times the standard deviation matches the specification range. 

 
 

8 
 

7 
 

6 
 

5 
 

4 
 

3 
 

2 
 

1 
 

0 
 

0 10 
 

20 30 40 
Thickness 

 
50 60 

 
Figure 6.4 Baseline histogram of rod thickness. 
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There are many choices for a baseline measure. We once asked a process engineer how 
he could tell if a planned process change would lead to an improvement. After some 
thought, he told us that he would receive fewer phone calls per week from his customers. 
In a problem with a system to measure silicon concentration in cast iron, the baseline was 
the measurement system R&R (repeatability and reproducibility). The problem goal was to 
reduce R&R to less than 20% of the process variation. See Chapter 7 and its supplement for 
more information on assessing measurement systems. 

As part of establishing the baseline for a continuous output, we determine the full extent 
of variation in the output. We use the full extent of variation in planning and interpreting the 
results in subsequent process interpretations. When looking at a histogram of the output, we 
define the full extent of variation as the range within which the vast majority of values lie. 
The range (minimum to maximum) defines the full extent of variation when the sample size 
is large (that is, the sample size is in the hundreds) and there are no outliers. For the rod 
thickness example, the full extent of variation is 2 to 59 thousandths of an inch. 

More generally, for a histogram with a bell shape (as given in Figure 2.11), the full 
extent of variation corresponds to the range given by the average plus or minus three times 
the standard deviation. Defined in this way, the full extent of variation covers most of the 
output values. 

Sometimes, we use the baseline investigation to generate clues about the dominant cause 
of the variation. For the rod line example, 40 rods were measured at the four positions each 
day for five days. We summarize the day-to-day performance using box plots in Figure 6.5. 

We see most of the full extent of variation within each day. We can draw two important 
conclusions from this observation: 

• The dominant cause of variation changes within days and we can rule out 
slowly varying causes that change from day to day or over a longer time frame. 

• In subsequent investigations to search for a dominant cause, we can set the 
study population to be rods produced on a single day. 
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Figure 6.5 Rod thickness by day (dashed lines show specification limits). 
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6.3 PLANNING AND CONDUCTING THE 
BASELINE INVESTIGATION 

To estimate the baseline, we need to carry out a process investigation. The purposes of the 
baseline investigation, in order of importance, are to: 

• Estimate the baseline for the current process. 

• Determine the full extent of variation in the output. 

• Generate clues about possible dominant causes. 

We need to keep the investigation simple, so we pay little attention to the third purpose. 
We discuss common issues in baseline investigations using the QPDAC framework 

with the rod line scrap reduction problem as the example. 
 
 

Question 

The target population is all units produced by the process now and in the future (assuming 
no changes are made). When we focus the problem, we specify the output characteristic. In 
the rod line example, the output is the rod thickness measured at any of the four locations. 
The attribute of interest (we call this the baseline) is a measure of the process performance 
related to the goal. In the rod example, the team chose the histogram of the thickness in the 
target population as the baseline. 

 
 

Plan 

We need to specify a study population from which we will collect a sample of units. The 
big issue is the period of time over which the study population extends. In the example, the 
team decided that the study population was all rods ground within a week. They felt that a 
single week was sufficient to see the full extent of variation in the target population. There 
is always a trade-off between avoiding study error with a longer period and the cost and 
time it takes to complete the baseline investigation. 

Remember, the goal of the baseline investigation is to understand the process perform- 
ance as the process currently operates. As a result, process adjustments should be made 
according to the current control plan. 

We choose a sampling protocol that spreads the sample units across the study population; 
in other words, we sample across the time period selected. In most cases, a combination of 
a systematic and haphazard method is used. If the output is measured on all units and the 
data are stored automatically, we can use the whole study population. In the rod example, 
40 rods were selected haphazardly throughout each day for five days. 

We specify the sample size to be large enough to avoid substantial sample error. As a 
rule of thumb, we suggest sample sizes of hundreds of units if the output characteristic is 
continuous and thousands if the output is binary. These sample sizes may seem large, but 
tables 6.3 and 6.4 demonstrate the difficulty of estimating a small proportion and the 
advantage of a continuous output. 
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In Table 6.3, we show roughly how well we can estimate (with 95% confidence) a stan- 
dard deviation as a function of the sample size.1 

 
 

Table 6.3   Relative precision for estimating a standard 
deviation as a function of sample size. 

Sample size Relative precision 

50 ±20% 

100 ±14% 

200 ±9% 

500 ±6% 

1000 ±5% 
 

In the rod thickness example, we can estimate (with 95% confidence) the baseline standard 
deviation in the study population to within about ±5% with a sample of size 800. 

For a binary output, we cannot give such a simple table since the precision of the estimate 
depends on both the sample size and the unknown defect rate. In Table 6.4, we give the relative 
precision (95% confidence) for estimating a proportion defective with a given sample size. 

 
 

Table 6.4   Relative precision (%) for estimating a 
proportion p with 95% confidence. 

 
 
 

Proportion defective 

Sample size 

1000 2000 5000 10000 

.05 ±27% ±19% ±12% ±8% 

.04 ±30% ±22% ±14% ±10% 

.03 ±35% ±25% ±16% ±11% 

.02 ±43% ±31% ±19% ±14% 

.01 ±62% ±44% ±28% ±20% 
 

In the example, the known baseline scrap rate is about 2%. Since the team exam- 
ined only 200 rods in the investigation, the sample proportion of defectives is almost 
useless as a baseline measure since it is so imprecise. If instead they had used a base- 
line sample of 2000 rods they would have estimated the proportion to within about 
±0.6% (2% ⋅ 0.31). 

In the baseline investigation, we must measure the output and input characteristics that 
define the problem. We can decide to measure other characteristics, such as the time the 
unit is produced, to generate clues about a dominant cause. We do not need to assess the 
measurement system at this point because we want to include variation due to the measure- 
ment system in the baseline. 
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Data 

The plan is implemented in the Data step. In the rod line example, the data were collected 
according to the plan without incident. The data are given in the file rod thickness baseline. 
We store the data in MINITAB using the row/column format convenient for statistical analy- 
sis as shown in Figure 6.6. Each row corresponds to a single measurement, and the columns 
give the corresponding day, batch, position, thickness, and rod number. See Appendix A for 
more on row/column data storage. 

 
 

 
 

Figure 6.6 Row/column format storage of rod thickness baseline data. 
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Analysis 

To quantify performance, we use the sample attribute corresponding to the population attri- 
bute selected in the Problem step. In the rod line example, we gave the sample histogram 
(Figure 6.4) and estimated the standard deviation as 11.0. We also look at other simple 
numerical and graphical summaries such as box plots and run charts to look for unusual val- 
ues and patterns in the data. 

For example, suppose we collect data as in the rod line investigation and we see a run chart 
as in Figure 6.7. Since there is an obvious trend, we would worry that the one-week study pop- 
ulation was not long enough to capture the full extent of variation in the target population. 

Similarly, if there were a large day effect, for example as illustrated by Figure 6.8, we 
would worry about study error. In this case, five days is not long enough to obtain a good 
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Figure 6.7 Artificial example showing a thickness trend. 
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Figure 6.8 Artificial example showing a large thickness day effect. 
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estimate of the long-term process variation (target population). Here, since the variation 
within each day is so small, the effective sample size for estimating the overall variation is 
closer to five (the number of days) than 800 (the number of thickness measurements). With 
a large day effect, the additional measurements taken each day give information about the 
within day variation but do not provide much more information about the overall variation. 

 
Conclusion 

In drawing conclusions from the baseline investigation, we report the estimates of the 
process attributes of interest such as the standard deviation, histogram, and run chart. In 
addition, we note any material limitations due to possible study or sample error. As illus- 
trated by figures 6.7 and 6.8, we may discover these limitations from the sample data. We 
may also have limitations due to concerns about the plan. If the sample size is small, we 
worry about sample error. In the rod example, the baseline is given by Figure 6.4. The full 
extent of variation is 2 to 59 thousandths of an inch. 

 
 

Baseline Investigation Summary 
 

Question 

The purpose of the investigation is to: 

• Estimate the baseline, an appropriately chosen attribute of the current process 

• Determine the full extent of variation of the output characteristic 

The team must select an appropriate baseline—for example, a histogram, a standard devia- 
tion, or a proportion. 

 

Plan 
 

• Choose a study population covering a period long enough to see the full extent of variation 
in the output. 

• Determine what outputs and inputs to measure.The inputs should include the time of production. 

• Select a sample well spread across the study population with respect to time and other 
(possibly) important inputs such as machine, position, and so on. The sample size should be 
hundreds of parts for continuous outputs and thousands of parts for binary outputs. 

 

Data 

Record the input and output values with one row for each output value measured (row/column 
format). 

 

Analysis 
 

• Summarize the data using the appropriate sample performance measure(s). For: 

–a continuous output, use the average, standard deviation, histogram, and run chart 

–a binary output, use the proportion defect and a run chart 

• Check for patterns in the output over time (and possibly other inputs). 

• Check for outliers. 

• Estimate the full extent of variation in the output. 
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Conclusion 
 

• State the problem and goal in terms of the estimated performance measure(s). 

• Determine the minimum time required to see the full extent of variation. 

• Consider possible study and sample error. 
 
 
 

Comments 

We can use existing data to establish a baseline. With the QPDAC framework we can exam- 
ine the data and how they were collected to ensure that we have confidence that the calcu- 
lated baseline reflects the true long-term process performance. For example, suppose the 
output is monitored using a control chart (Montgomery, 1996; Ryan, 1989). We can select 
an appropriate time period (that is, a study population) from the recent past and use the con- 
trol chart data over that period. We do not require the process to be stable, as defined by the 
control chart, to estimate the problem baseline.2 

Some projects will generate several problems, defined in terms of different outputs. We 
may be able to plan and carry out a single investigation that simultaneously establishes the 
baseline and full extent of variation for each problem. We need to be careful to avoid study 
and sample error for each of the outputs. 

 
 
6.4 EXAMPLES 

We give two further examples of focusing the problem and estimating the baseline. 
 

Truck Pull 

We described a project in Chapter 1 where management identified truck alignment as a key 
issue based on a Pareto analysis of warranty costs and customer quality surveys. They set a 
project goal to match the performance of a competitor based on these surveys. The same 
truck was built at several plants. To concentrate resources, the management established a 
team at one plant to work on the project. They assumed that any remedy found at that plant 
could be applied to the others. 

From mathematical modeling of the truck geometry, the team knew that customers could 
detect pull, a torque on the steering wheel. Pull is a function of the front wheel alignment as well 
as many other characteristics such as tire design and pressure, the road camber, and condition. 
Within the assembly plant, pull was measured as a function of caster and camber only. We have 

 
pull = 0.23*(left caster – right caster) + 0.13*(left camber – right camber) (6.1) 

 
The specification limits for pull are 0.23 ± 0.35 Newton-meters. The plant measures 

and records caster and camber on every truck. Any truck with pull outside the specification 
limits is repaired before release. 

To focus the problem, the team started by relating pull as measured in the plant to war- 
ranty costs due to alignment problems. They divided the pull specification range into seven 
classes, each of width 0.10. Using historical data on the alignment characteristics and a 
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warranty database, the team grouped trucks into the seven classes, and for each class cal- 
culated the average warranty cost due to alignment issues. Figure 6.9 shows that warranty 
costs are higher for the extreme classes, corresponding to pull values near the specification 
limits. This suggests that warranty costs can be reduced by reducing variation in pull. The 
team assumed reducing pull variation would improve customer satisfaction as measured by 
the quality surveys. 

To establish a baseline, the team selected data from the previous two months. The data 
are given in truck pull baseline. They felt that this time period was long enough so that they 
would see the full extent of the variation in the process. The histogram for these data is 
shown in Figure 6.10, with the specification limits given by the dashed lines. 

The team also constructed box plots of pull by day as shown in Figure 6.11. We see 
clear evidence of some day-to-day variation, with drifts in the pull center over time. 
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Figure 6.9 Average warranty cost versus truck pull class. 
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Figure 6.10 Truck pull baseline histogram. 
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Figure 6.11 Box plots of truck pull by day. 
 
 

The numerical summary of the pull data is: 
 

Variable N Mean Median TrMean StDev SE  Mean 
pull 28258 0.23093 0.23084 0.23070 0.08234 0.00049 

 

Variable Minimum Maximum Q1 Q3 
pull -0.14060 0.60120 0.17618 0.28502 

 

The team set the problem goal to reduce the standard deviation of pull from 0.082 to 
1.50. If they could achieve this goal, almost all trucks would leave the plant with pull in 
classes 3, 4, and 5, and warranty costs would be reduced. 

To further focus the problem, the team used Equation (6.1). Pull is a simple function of 
cross caster (difference between left and right caster) and cross camber. Looking at sum- 
maries of the cross caster and camber in the baseline data, we have 

 
Variable N Mean Median TrMean StDev SE  Mean 
cross caster 28258 –0.99982 –0.99600 –0.99795 0.36724 0.00218 
cross camber 28258 0.00748 0.01500 0.00991 0.20124 0.00120 

 

Variable Minimum Maximum Q1 Q3 
cross caster –2.73600 0.49800 –1.23900 –0.75700 
cross camber –1.01500 1.08400 –0.11800 0.14100 

 

Using Equation (6.1) and ignoring the small correlations (the correlations between the 
right and left sides of both camber and caster are around –0.2, and the correlation between 
cross camber and cross caster is around 0.2), we have 

 
 ( ) ( ) ( ) ( ) ( )2 2 2 20.23 0.13stdev pull stdev cross caster stdev cross camber= +  
 

Since 0.23stdev(cross caster) is much greater than 0.13stdev(cross camber), cross 
caster is a dominant cause of pull variation. Based on this knowledge, the team refocused 
the problem based on caster. There is little benefit to reducing variation in camber. Using 
Equation (6.2), if they cut the variation in cross caster in half from 0.367 to 0.185, they 
could achieve the goal of reducing the pull standard deviation to 0.05. Numerical sum- 
maries for right and left caster are: 

 
Variable N Mean Median TrMean StDev SE  Mean 
l-caster 28258 3.5190 3.5230 3.5204 0.2241 0.0013 
r-caster 28258 4.5188 4.5210 4.5192 0.2427 0.0014 

 

Variable Minimum Maximum Q1 Q3 
l-caster 2.4490 4.5480 3.3700 3.6720 
r-caster 3.0440 5.9380 4.3600 4.6780 

 

The team could accomplish the goal if they reduced the variation in both right and left 
caster by half. They decided to address right caster first, hoping that any process improve- 
ments could also be made to the left side. 
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We give a histogram of right caster in Figure 6.12. There is a large number of trucks in 
the data set, so we need to be careful when defining the full extent of variation. The team 
decided not to use the observed range since there were several outliers, as shown in the box 
plot in Figure 6.12. Rather, looking at the histogram and the numerical output, they defined 
the full extent of variation as 3.80° to 5.25° (4.52 ± 3*0.24). 

In summary, the team focused the project as defined by the management to reducing 
variation in right caster from the baseline standard deviation of 0.24° to 0.12°. They connected 
the management and problem goal through an investigation of the warranty database. They 
could not connect the problem directly to the customer satisfaction surveys. They estab- 
lished the full extent of right caster variation. They were confident that there was little 
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Figure 6.12 Histogram and box plot of right caster from baseline. 
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study error in their conclusions since they believed two months of data described the per- 
formance of the alignment process in the long term. 

 
Pump Noise 

A finished vehicle audit at an assembly plant repeatedly detected unacceptably noisy wind- 
shield washer pumps. The plant charged for the repairs and put great pressure on the pump 
manufacturer to solve the problem. The pump manufacturer established a project to eliminate 
complaints due to noisy pumps. 

A team began by developing a noise measurement system that could be used in the 
manufacturing facility before the pumps were assembled into vehicles. Each member of the 
three-person team subjectively assessed 24 pumps in vehicles for noise using a five-point 
scale. The vehicles selected were both acceptable and unacceptable to the vehicle assembly 
plant. The average score for each pump was recorded. The 24 pumps were then removed 
and the noise was measured using the new in-plant system. After some adjustments, the 
team was able to achieve a strong correlation between the subjective human and the in- 
plant measurement systems (see Figure 6.13). The data from the final measurement inves- 
tigation are given in pump noise measurement. Using the subjective measure, the team 
judged that a score of 4 or greater was unacceptable to the customer. Accordingly, they set 
a limit of 8 as the upper noise specification as determined by the in-plant system. 

The team was confident that they could detect noisy motors in their facility using the 
new measurement system. Over a two-day period, they selected 100 motors haphazardly 
from the current production and measured the noise level. The data are given in pump noise 
baseline. The baseline histogram is given in Figure 6.14. 

In the sample, 18% of the motors had a measured value exceeding the new specifica- 
tion limit. The problem goal was to reduce this percentage to 0. The full extent of variation 
in the baseline using the in-plant measurement system is 0 to 15. 
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Figure 6.13 Correlation between in-plant and subjective pump noise measurement 

systems. 
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Figure 6.14   Baseline histogram for noisy pumps. 

 
 

The team did not consider possible study or sample error. They assumed that the sample 
of 100 motors from a two-day period would accurately describe the long-term performance 
of the process. They were driven to proceed by the urgent nature of the problem. 

 
 
6.5 COMPLETING THE DEFINE FOCUSED PROBLEM 

STAGE 

Define a Focused Problem is the first stage of the Statistical Engineering algorithm. The 
purpose of the stage is to understand and quantify the nature of the problem in a way that 
makes sense in the production environment. When we start this stage, we have a project 
description and goal from management, and some prior experience with process. The key 
tasks necessary to complete this stage are: 

• Define a focused problem or problems with an established link to the project goal. 

• Estimate the problem baseline, that is, give a graphical or numerical summary 
of process performance. 

• Set a problem goal, stated in terms of the baseline, that matches the project goal. 

• Estimate the full extent of output variation in the current process. 
The first task may be the most difficult. We must translate a vague management 

description, such as too much scrap or too many complaints, into specific problems 
expressed in terms of an output characteristic and the baseline. Since we assume that there 
is a single dominant cause of the problem, we need to be as specific as possible. We may 
have to revisit this stage later. 

We try to describe the problem in terms of a continuous output. This may not be possible. 
In many applications, the team invents a new continuous output and a way to measure it to 
specify the problem. The pump noise problem is a good example. 

We need to specify a baseline that we use to define the goal of the problem. We esti- 
mate this measure of current process performance using a baseline investigation or existing 
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data. In either case, we must be careful that the time frame for the study population is long 
enough to give an accurate picture of the current process performance. 

We use the full extent of variation to help plan and analyze future process investigations. 
In cases where there are outliers (unusual values) in the baseline investigation, we ignore 
them in determining the full extent of variation, unless the outliers define the problem. 

The full extent of variation for a binary output is given by the two possible values of the 
output. The notation of the full extent of variation is not that helpful in planning investigations 
in this case, other than to suggest we need to examine both defective and nondefective units. 

 
 

Key 
Points 

 

• A project should be translated into one or more specific problems, each of which: 
–Has a single dominant cause 
–Can be quantified in terms of a measured output characteristic 

• The goal of each problem should be directly linked to the project goal. 
• We estimate a problem baseline to quantify the goal, to assess a proposed solu- 

tion, and to help in the search for a dominant cause and solution. 
• For problems with a continuous output, we determine the full extent of variation 

to help plan and analyze subsequent investigations. 
 
 

Endnotes (see the Chapter 6 Supplement on the CD-ROM) 

1. See the supplement to this chapter for a brief introduction to confidence intervals in the 
context of estimating the process standard deviation and other attributes. We explain how to 
use confidence intervals and how to determine them using MINITAB. 

2. Does a process need to be stable in the sense of Statistical Process Control before we can 
establish a baseline performance measure? We consider this issue and firmly answer no! 

 
 
 
 
 
 
 

Exercises are included on the accompanying CD-ROM 
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7 
Checking the Measurement System 

 
 
 
 
 
 

When you can measure what you are speaking about, and express it in 
numbers, you know something about it; but when you cannot measure it, 
when you cannot express it in numbers, your knowledge is of a meager and 
unsatisfactory kind. It may be the beginning of knowledge but you have 
scarcely, in your thoughts, advanced to the state of science, whatever the 
matter may be. 

—William Thompson (Lord Kelvin), 1824–1907 
 
 
 

heck the Measurement System is the second stage of the Statistical Engineering 
algorithm. The purpose is to ensure that we have an effective measurement system 
for the output characteristic that defines the problem. We assess the measurement 

system for two reasons: 

• The measurement system may be home to the dominant cause of variation. 

• We use the measurement system to produce data in subsequent investigations in 
the variation reduction algorithm. 

The measurement system provides a window to view the process. If the window is 
foggy, we are not able to see clearly what is going on. We must improve the measurement 
system if we judge it to be inadequate. Sometimes, we can meet the problem goal just by 
improving the measurement system. 

There are many types of output characteristics and measurement systems. For exam- 
ple, the output of the system may be as complex as a force versus time curve, or as simple 
as a score on the scale from 1 to 5. In this chapter, we describe how to assess a nondestruc- 
tive measurement system for a continuous characteristic. In the supplement, we discuss 
variants on the plans to assess measurement systems for binary characteristics1 and for 
destructive measurement systems.2 
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7.1 THE MEASUREMENT SYSTEM AND ITS ATTRIBUTES 

A measurement system is not just a device or gage. For any characteristic, it includes the: 

• Gages, masters, and other materials 

• People using the gages 

• Procedures for use, including calibration and mastering 

• Environment in which the gage is used 
In a project to reduce camshaft scrap and rework, the team focused on journal diameter. At 
the final 100% inspection, the diameter of each of the four journals was measured at two 
locations. We show the front and rear locations for journal 1 in Figure 7.1. 

The inspection gage had eight heads, one for each location. The operator placed the 
camshaft into the gage. The diameter was defined as the maximum value as the part was 
rotated through 360°. The specifications were ±12.5 microns, measured from the target 
value. Camshafts that did not meet specifications were sent to a rework area where oper- 
ators used a similar gage to aid in repair or to confirm that a part should be scrapped. The 
two gages were mastered daily using a certified steel cylinder that could be placed in the 
two heads corresponding to each journal. There was also a yearly calibration procedure. 

In this measurement system, there are two gages (or 16 if you count each head separately), 
a single master, several operators, a prescribed method, and a changing environment in 
which temperature, for example, was uncontrolled. 

We do not get the true value of the characteristic when we measure a part. We call the 
difference between the true and measured values the measurement error. We cannot deter- 
mine the measurement error since the true value of the characteristic is unknown unless we 
measure a part with certified known value. 

We think of the act of measuring as a process. There is a direct analogy between a 
measurement process and a production process. Measurement systems produce measure- 
ments (the units) rather than parts. In this light, assessing the measurement system is similar 
to establishing the problem baseline (see Chapter 6). 

We need to specify a target population. We plan to use the measurement system to 
determine process behavior and, perhaps, to monitor and control the process in the future. 
The target population is all the acts of measuring that we plan to make. For each such act, 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.1 Front and rear camshaft journal locations. 
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the output characteristic is the measurement error. We define two important attributes of the 
measurement system for this target population: 

• Measurement variation (also called precision, or better imprecision): the 
standard deviation of the measurement errors 

• Measurement bias (also called accuracy, or better inaccuracy): the average 
measurement error 

We can picture measurement variation and bias as in Figure 7.2. The idealized histogram 
shows the measurement errors for all measurements in the target population. This is the set of 
measurement errors if we repeatedly measured many parts over a long time period. 

There are many other attributes of the measurement system that may be of interest. 
For example, do measurement bias and variation depend on the true value of the part 
being measured? Or do measurement bias and variation change over time? We can define 
and estimate other attributes to look at these issues related to linearity and stability of the 
system (Automotive Industry Action Group [AIAG], Measurement System Manual, 
1995).3 

For many gages, the supplier provides a standard deviation to indicate the capability of 
the gage. However, these performance measures are determined under narrow conditions 
and almost always underestimate the measurement variation as we have defined it over a 
broad target population with varying parts, operators, environment, and so on. 

For many problems, we do not assess measurement bias, especially when the problem 
baseline is quantified in terms of a standard deviation. If we remove bias from the measure- 
ment system and change nothing else, we shift the center of the output characteristic but do 
not change the variation. If there are two measurement systems within the same process, 
then we may look at the relative measurement bias of the two systems. See Section 7.3. 

We start by discussing how to assess measurement variation. 
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Figure 7.2 Representation of measurement variation (standard deviation) and bias. 
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7.2 ESTIMATING MEASUREMENT VARIATION 

Measurement variation is the standard deviation of the measurement errors over a broadly 
defined target population. Surprisingly, we can estimate the measurement variation without 
knowing the true value of the characteristic for any part, that is, without knowing the meas- 
urement errors. Suppose that we measure a characteristic of the same part several times. 
For example, suppose we measure the diameter of the same camshaft journal at the same 
location five times with results 

 
1.4, 1.1, 1.3, 0.2, 0.1 

 
Since we are repeatedly measuring the same part, the variation in the measured values is 

due solely to the variation in the measurement errors. We are assuming that the measuring 
process does not change the true diameter, that is, that the measurement process is not destruc- 
tive. If the five measurements were taken over conditions matching the target population, we 
can use the standard deviation of the five values to estimate the measurement variation. 

We now describe an investigation to estimate the variation of the measurement system. 
We use the camshaft journal measurement system as the example restricting our attention 
to the final inspection gage and the front location on journal 1. In reality, the team looked 
at all eight locations on both gages. 

 
Question 

The purposes of the investigation were to: 

• Estimate the standard deviation of the measurement errors over a wide range 
of parts, a variety of operators, changing environmental conditions, and a long 
period of time 

• Compare the measurement variation to the variation due to the rest of the process 
 
 

Plan 

The first step in the Plan is to define a study population. In other words, what measure- 
ments can we possibly take in the investigation? We need to decide: 

• Which parts to measure 

• Which operators to include 

• What time frame to use 

We recommend using three parts with values spread across the full extent of output 
variation seen in the baseline investigation. Here, the team used three camshafts with initially 
measured diameter values –12.2, 0.9, and 12.8, as shown in Figure 7.3. 

If several operators use the measurement system, then we recommend including at 
least two operators in the study population. If the gage is automated so that it is known that 
there is no operator impact, then we can use a single operator. In the camshaft example, 
there were three operators, one from each shift. 
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Figure 7.3 Baseline performance for journal 1 front diameter. Arrows show diameter 

values chosen for measurement investigation. 
 
 

We can get some guidance from the baseline investigation to help select an appropriate 
time frame for the study population. Ideally, we assess the measurement system over a 
period long enough to see the full extent of variation given in the baseline. This ensures that 
the dominant cause (if it is in the measurement family) has time to act over the course of 
the investigation. In the example, the team selected a one-week period for the study popu- 
lation. In our experience, most teams make the mistake of selecting a time frame that is far 
too short because they want to finish the measurement assessment stage quickly. 

We need to specify a sampling protocol to determine exactly what measurements will 
be taken. We plan to measure each part a number of times. We recommend selecting at least 
two time points within the chosen study period and having each operator measure each part 
at least twice at each time point. 

In the camshaft example, two days were chosen, one week apart. On both days, the 
team planned to have each operator measure each camshaft three times. They would give 
the parts to the operators in random order for each determination. A team member would 
record the results. With this plan, each of the three parts is measured 18 times (2 days by 3 
operators by 3 determinations). The sample has a total of 54 measurements. 

Other than day, operator, part number, and time, the team decided to record no other 
characteristics. If they had suspected that the attributes of the measurement system would 
change due to some environmental factor such as temperature, they could record the tem- 
perature at each determination. If the measurement system is the home of the dominant 
cause of the overall variation, the team can use these data to look for clues about why the 
measurement variation is so large. 

The plan should be executed under normal conditions. For example, the operators taking 
the measurements should use their usual method, and gages and parts should not be spe- 
cially cleaned. 

It is a good idea to randomize the order of measurement within each time period so that 
the operators cannot remember an earlier result for a particular part characteristic. This 
point is especially important if there is a subjective element to the measurement system. 

There are many other possible plans.4 
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Figure 7.4 Camshaft diameter measurement investigation data in row/column format. 
 
 
 

Data 

In the camshaft journal diameter example, the team executed the plan. The 54 
measured values and the corresponding time, operator, and part number were 
stored in the file camshaft journal diameter measurement. Figure 7.4 shows 
some of the data stored in the suggested row/column format (see Appendix A) in a 
MINITAB spreadsheet. 

 
Analysis 

We estimate the measurement variation by calculating the standard deviation of the 
meas- urements made on each part. The variation in these measurements is due 
solely to variation in the measurement errors. For the camshaft example the 
average and standard deviation for each part are: 

 
 

Descriptive  Statistics:  diameter  by  part 
 

Variable part N Mean StDev 
diameter 1 18  –10.90 0.638 

 2 18 1.20 0.796 
 3 18  12.68 0.820 

 

We combine the three standard deviations with the formula 
 

 ( )
2 2 20.638 0.796 0.820 0.756

3
sd measurement + +

= =  

 

to produce the estimate of the measurement variation. We can get this value directly from 
a one-way analysis of variance (known far and wide as ANOVA) using MINITAB as 
described in Appendix D. 
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We can also look at how the measurement variation changes over time, over parts, and 
over operators. We find this analysis useful to look for outliers (see the supplement to 
Chapter 5) and to generate clues about a dominant cause if the measurement variation is 
too large. 

In Figure 7.5, we plot the measured values versus the part number (left panel) and, 
more revealingly, the deviation from the part average versus part number (right panel). We 
see that the variation due to the measurement system is roughly the same for the three parts 
and that the measurement system can distinguish among these parts. There are no outliers. 

In Figure 7.6, we show the results for the two weeks used in the example investigation. 
We see no obvious changes in the measurement variation over time. If there were clear dif- 
ferences over time, we would be concerned about study error and would recommend 
repeating the plan over a longer time frame. 
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Figure 7.5 Diameter and diameter minus part average by part number. 
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Figure 7.6 Diameter and diameter minus part average by week. 
 
 

Conclusion 

We estimate the measurement variation to be 0.756 microns. We cannot interpret this stan- 
dard deviation in terms of how close a measured value is likely to be to the true value because 
we do not know if the measurement system has bias. Perhaps the easiest interpretation is to 
say that if we measure the same part at two different times with different operators, then the 
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difference in the two measurements is likely to fall in the range5 
 
 
 ( )2 2 estimated measurement stdev±  
 
 

In the camshaft example, this range is ±2.14 microns. Since we looked at only 54 meas- 
urements, there is possible sample error in the estimate of the  order  ±20%  (see Table 
6.3). 

To quantify the effect of measurement variation, recall from the model described in 
Chapter 2 that we can partition the overall variation into two pieces—one due to the varia- 
tion in the true values of the characteristic and the other due to the variation from the meas- 
urement system. That is, we have 

 
 

 ( ) ( ) ( )2 2due to process due to measurementsd total sd sd= +  (7.1) 
 
 

From the baseline investigation in the Define Focused Problem stage (discussed in 
Chapter 6), we have an estimate of sd(total) that we used as a baseline to define the prob- 
lem. We labeled this estimate stdev(total). From the measurement investigation, we esti- 
mate sd(measurement). Then we can use Equation (7.1) to judge if the measurement system 
is a major contributor to the overall variation. 

In the camshaft example, the estimated total standard deviation is 6.055 (determined 
from a baseline investigation) and the estimated standard deviation from the measurement 
system is 0.756. Using Equation (7.1) with the estimates, we can solve for the contribution 
from the rest of the process, that is, 

 
 
 ( ) ( ) ( )2 2due to process total due to measurementstdev stdev stdev= −  (7.2) 
 

 
In the example, ( )due to processstdev  is 2 26. 55 0.756 6.008o − = . We see that the 

measurement system has very little impact on the overall variation. 
The effectiveness of the measurement system depends on the relative sizes of the vari- 

ation due to the process and measurement. We summarize the measurement effectiveness 
using the discrimination ratio D given by Equation (7.3). Larger values of this ratio are bet- 
ter since we are better able to distinguish among parts using the measurement system.6 
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( )
( )

due to process
due to measurement

stdev
D

stdev
=  

                                      (7.3) 

 

 

If D is less than about 2, the measurement system is home of a dominant cause of vari- 
ation. We should reformulate the problem in terms of the measurement system. In this case, 
improving the measurement system may solve the original problem. 

If D exceeds 3, then we know that the measurement system is not the home of a dom- 
inant cause and we can proceed with the next stage of the algorithm and choose a working 
variation reduction approach. 

If D falls between 2 and 3, the measurement system is not a dominant cause, but the 
measurement system should be improved (see Section 7.5). This recommendation may be 
ignored depending on the nature of the problem and the difficulty and cost of improving the 
measurement system. If the discrimination ratio is between 2 and 3, we may have difficulty 
interpreting the data in future process investigations. 

 
 

 
Measurement Variation Assessment 

Investigation Summary 
 

Question 

For all acts of measurement with the measurement system in the future: 

• What is the measurement variation, i.e., the standard deviation of measurement errors? 

• Is the measurement variation sufficiently small? 
 

Plan 
 

• Ensure that the measurements are made under normal operating conditions. 

• Select: 

–Three parts that cover the full extent of variation in the output 

–Two or three time periods that cover a period over which you expect to see the full extent of 
the variation in the output, if feasible 

–Two or three operators, if multiple operators are normally used 

–Two or three gages, if multiple gages are normally used 

• Make three measurements under each combination of part, operator, time period, and gage. 
 

Data 

Record the measured output and corresponding operator, gage, time, and part number with 
one measurement per row. 
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Analysis 
 

• Calculate the average and standard deviation of the measurements by part number. 

• Combine the within-part standard deviations to estimate the measurement variation. 

 ( ) ( ) ( ) ( )2 2 21 2 3
3

stdev part stdev part stdev part
stdev measurement

+ +
=  

 2

• Plot the measurements and the deviation from part average by the part number, time period, 
operator, and gage. Look for unusual patterns and outliers. 

 
Conclusion 

• Calculate the discrimination ratio: 
( )

( )
due to process

due to measurement
stdev

D
stdev

=  

• If 

–D < 2, the measurement system is the home of a dominant cause. Reformulate the prob- 
lem in terms of measurement variation. 

–2 < D < 3, the measurement system is not the home of a dominant cause but should be 
improved. 

–D > 3, the measurement system is not the home of a dominant cause and is adequate. 

• If the measurement system is not adequate, look for clues pointing to the dominant cause of 
measurement variation. 

 

 
 

In the camshaft example, there were eight diameters measured on each part. We may 
not be able to find three parts with the full extent of variation on each characteristic. Finding 
and using different parts for each diameter was too complicated, so the team selected parts 
based on journal 1 only. 

We may be able to use the results from recent gage repeatability and reproducibility 
(R&R) investigations to estimate the measurement variation.7 However, we must assess the 
risk of study error since typical R&R investigations are conducted over a short time frame. In 
many cases, the estimate from R&R substantially underestimates the measurement variation. 

 
 
 
7.3 ESTIMATING MEASUREMENT BIAS 

To estimate measurement bias we must measure units with known values. We use known 
here in a relative sense. As a rule of thumb, the variation and bias of the measurement sys- 
tem used to determine the known values should be at least 10 times less than the variation 
and bias of the system under investigation. 

The units with known values may be certified standards such as gage blocks or they 
may be actual parts that have been measured on another measurement system that has low 
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variation and bias. For the camshaft journal diameter system and others that have special- 
ized fixtures, we recommend the use of certified parts to avoid possible study error. 

We follow the same plan as we used to estimate the measurement variation. In the 
camshaft journal diameter example, the original problem was excessive scrap and rework. 
The rework operators had noticed that some of the parts rejected by the final inspection 
gage were acceptable when measured by the rework gage. The team decided to assess the 
bias of both measurement systems. Here we consider only the final inspection system and, 
as earlier, the front location on journal 1. 

There were no certified parts available. Instead, the team used the three camshafts that 
were described in Section 7.2. For each part, the journal diameter was measured five times 
on the in-house coordinate measuring machine (CMM). The data are given in Table 7.1. 

 
 

Table 7.1   Journal diameter CMM data. 
 

 
 
 
 

Part 

Repeated measurements Summaries 
 
 

1 

 
 

2 

 
 

3 

 
 

4 

 
 

5 

 
 

Average 
Standard 
deviation 

1 –8.62 –8.35 –8.61 –8.26 –8.68 –8.504 0.19 

2 4.24 4.00 4.17 3.93 4.47 4.162 0.21 

3 14.64 14.75 14.62 14.20 14.56 14.554 0.21 
 

The team took the average CMM values to be the true values. Note that the variation of 
the CMM was about 0.20 microns. By averaging five readings, this variation was reduced 
to 0.09 ( 0.2 5 ; see “Use Combined Measurements” in Section 7.4). The team 
assumed that the bias of the CMM was negligible. 

To estimate the bias in the final gage, we calculate the measurement error for each of 
the 54 diameters measured in the initial investigation. Recall that 

 
measurement error = measured value – true value 

 
The data file camshaft journal diameter measurement2 gives the measurement errors for 
this investigation. We use the average of the observed measurement errors as the estimate 
of bias. 

From the numerical summary that follows, we estimate the measurement bias to be 
–2.44 microns. The final gage gives consistently smaller measured diameters than the 
CMM. 

 
Variable N Mean Median TrMean StDev SE  Mean 
meas.  error 54 –2.437 –2.434 –2.432 0.866 0.118 

 

Variable Minimum Maximum Q1 Q3 
meas.  error –4.455 –0.511 –2.954 –1.780 
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We plot the measurement errors against the part number and week in Figure 7.7. The 
plot shows that the measured values at the final gage were consistently smaller for all parts 
and there was no change from one week to the next. 

The team considered two possible limitations to this conclusion. First, was there some- 
thing peculiar about the three parts used or the time during which the investigation was 
conducted? Since the bias persisted across all three parts (see Figure 7.7) and did not 
change much over the week, the team was confident that there was a systematic difference 
between the final gage and the CMM. Second, was the bias due to the CMM? The team, 
with all members from production, had more faith in their own system that was specially 
designed to measure journal diameters than the CMM that was an all-purpose gage. Recall 
that there were eight gage heads to measure the two positions on the four journals in the 
inspection system. We have given the results for one position on journal 1. The estimated 
bias for the other seven heads was very small, less than 0.5 microns. Since the same CMM 
program was used to certify all four journals, the team concluded that the observed bias on 
journal 1 was not due to the CMM. 

Given that the diameter specifications were ±12.5 microns and the process perform- 
ance used up more than the full tolerance (Figure 7.3), the team knew that the bias was 
large enough to cause inspection errors. They arranged maintenance on the gage, and a sub- 
sequent bias investigation showed that the problem had been corrected. They implemented 
a once-a-shift check of the system using a reference part (one of the parts certified by the 
in-house CMM) to indicate if the bias problem recurred. 

Note that the plan to investigate measurement bias is identical to that for estimating 
measurement variation except that we use parts or standards with known values. We can 
simultaneously estimate both bias and variation from such a plan. 

When we have two or more measurement systems for the same characteristic, measure- 
ment variation and bias can be the source of acrimony and confusion among the users. We have 
seen battles between customers and suppliers, each insisting that the value produced by their 
own measurement system is correct. In one instance, we saw a process in which a transmission 
part was inspected on four different systems, the last being at the customer. The customer 
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Figure 7.7 Measurement error stratified by part number and week. 
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occasionally found parts out of specification even though they had been through three upstream 
inspections. Needless to say there was a lot of finger pointing and high inspection costs. 

The relative bias of two measurement systems is the difference in bias. We can esti- 
mate the relative bias without using parts with known values. We need to measure a num- 
ber of parts on both systems and compare the results. There are many possible plans. We 
discussed an investigation to estimate the relative bias of two measurement systems for V6 
piston diameter in Chapter 5. 

We find it difficult to give a general rule to decide if bias is too large. We need to assess 
the bias in terms of the original problem, the overall variation, and the consequences. 

In the example, given the baseline variation, the team knew that the negative bias in the 
final inspection gage was large enough that they were shipping oversized parts. The bias 
also helped to explain why the repair gage accepted parts that were undersized at final 
inspection. 

 
 
7.4 IMPROVING A MEASUREMENT SYSTEM 

If the variation or bias of the measurement system is too large, we must improve the sys- 
tem to solve the problem or to proceed to the next stage of the variation reduction algo- 
rithm. There are several possible strategies. 

 
Fix the Obvious 

The first rule, as always, is to fix the obvious. In the camshaft example, the team decided 
that maintenance of the gage was necessary because the bias was large enough to explain 
false rejects. They also knew how to implement and use the reference part procedure to 
detect recurrence of the bias. 

In general, we can adjust for bias when it is consistent across parts and time by subtracting 
an offset (equal to the estimated measurement bias) from the measured value. We need to 
assume linearity (constant bias for all parts) for this offset strategy to be effective. If the 
properties of the measurement system change too quickly over time, we may calibrate the 
system more frequently. Or we may discover that maintenance of the system is long overdue. 

 
Use Another Measurement System 

In some cases we may be able to use a better measurement system for the duration of the 
problem solving. For example, we may be able to use an offline measurement system that 
has smaller variation but a cycle time that is too large for use in regular production. Another 
idea to reduce variation in a measurement system with a large subjective component is to 
use a single operator to make all of the measurements in subsequent investigations. 

Alternately, we may invent a new measurement system. In a bottling operation, manage- 
ment raised a concern over crooked and misplaced labels. The label was to be placed on the 
neck of the bottle a set distance below the bead. In establishing the problem baseline, a height 
gage was used that measured the distance between the bottom of the bottle and the bottom of 

 

 

the label. As the bottle was rotated, the system measured the maximum and minimum distance 
and calculated the average height and crookedness (maximum height – minimum height). In 
the measurement system assessment, the discrimination ratio for average height was 3.1. 
Although the measurement system was not the dominant cause of the variation, the team 
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believed they would have difficulty in subsequent investigations because of the measurement 
variation. They decided to use a feeler gage to measure the distance between the label and the 
bottle bead. The discrimination ratio of the feeler gage system was 6.5. The team felt comfortable 
proceeding to the next stage of the variation reduction algorithm using the feeler gage. 

 
Use Combined Measurements 
We can sometimes combine a number of measurements to reduce bias or variation. For 
example, if there is a significant bias in a weighing process, to determine the weight of an 
object we may first weigh the object together with a container and then weigh the container 
on its own. The weight of the object is the difference. This method eliminates the measure- 
ment bias as long as bias does not depend on the true weight. There is an increase in meas- 
urement variation. 

We can reduce variation by a factor of 1 2  = 0.7 if we average the values from two 
determinations on each part. More generally we reduce variation by a factor of 1 n  if we 
average n measurements on each part. Averaging has no effect on bias. For this method to 
be effective, we assume that the repeated measurement of a part by the same operator over 
the short term captures the long-term measurement variation in the measurement system. 
This method was used in the camshaft journal diameter example to certify parts using the 
in-house CMM. The diameter of each camshaft journal was measured five times. To help 
ensure that the five measurements reflect the long-term measurement variation, the 
camshaft was removed from the CMM and refixtured between measurements. 

 
Reformulate the Problem and Use the Statistical Engineering Algorithm 

We may find a way to reduce measurement variation using the Statistical Engineering algo- 
rithm. The results from the measurement investigation can serve as a problem baseline. As 
in other applications of the algorithm, to determine the appropriate (measurement) variation 
reduction approach, we need to examine how the measurement system behaves. We provide 
examples of applying the various approaches to measurement systems later in the book. 

If we record the values of other inputs such as temperature, time, and so forth, in the 
measurement system investigation, we can use these data to search for clues to the dominant 
cause of the measurement variation.8 Again, note the analogy to the baseline investigation. 
See further examples in chapters 9 through 12. 

 
 
7.5 COMPLETING THE CHECK THE 

MEASUREMENT SYSTEM STAGE 

The purpose of the Check the Measurement System stage is to ensure the measurement system 
is not a dominant cause of the variation and that the measurement variation and bias are 
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sufficiently small to support further process investigations. To complete this stage, the key 
tasks are: 

• Estimate the measurement variation and possibly bias. 

• Calculate the discrimination ratio, D, as given by Equation (7.3). 
• If the measurement variation or bias is too large, reformulate the problem in 

terms of the measurement system. 

• Fix obvious problems in the measurement system. 

If we substantially increase the discrimination ratio, is it necessary to repeat the baseline 
investigation using the altered measurement system? 

If D < 2, then we reformulate the problem in terms of the measurement system and 
use the results from the measurement system investigation as a baseline for the reformu- 
lated problem. We will reassess the original baseline when we validate the solution in 
the last stage of the Statistical Engineering algorithm. If D > 2, the measurement system 
is not a dominant cause of variation. Thus, reassessing the baseline is unnecessary 
because any change to the measurement system will have little impact on the full extent 
of variation. 

 
 

Key 
Points 

 

• We must assess the measurement system for the output characteristic that 
defines the problem because it may be the home of the dominant cause of vari- 
ation and because it will be used in future process investigations. 

• The key attributes of the measurement system are bias and variation. Bias is the 
average and variation is the standard deviation of all measurement errors made 
in the future. 

• To estimate the measurement variation, we define a study population over a wide 
range of conditions, including a variety of parts, operators, gages, and times. 

• To estimate bias, we apply the same plan proposed for estimating measurement 
variation using parts with known values. 

• To assess the adequacy of the measurement system, we look at the impact of the 
bias and compare the measurement variation to the standard deviation of the 
true values of the characteristic. 

• If necessary, for the purpose of problem solving, we may use a different meas- 
urement system than that used to define the baseline performance. 
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Endnotes (see the Chapter 7 Supplement on the CD-ROM) 

1. Binary measurement systems that classify units into one of two classes are relatively common. 
In the supplement we discuss how to assess such systems. 

2. We have provided plans and analysis methods to estimate variation and bias for continuous 
characteristics that are not affected by taking a measurement. In the supplement, we look at 
similar methods for destructive measurement systems. 

3. We consider the AIAG definitions of repeatability, reproducibility, linearity, and stability. We 
compare these attributes to measurement variation and bias and discuss their usefulness in the 
variation reduction algorithm. 

4. We discuss gage R&R and Isoplots™ (measurement system scatter plots) as tools for 
estimating the measurement variation. We compare these assessment procedures to that 
proposed in Section 7.2. 

5. It can be difficult to interpret the estimate of measurement variation. We provide an explanation 
in terms of how large a difference you might see between two measurements on the same unit. 

6. We have suggested a criterion for assessing the variation of a measurement system and 
making decisions on how to proceed. We look more deeply at this criterion and compare it to 
other standards such as to gage R&R < 30%. For example, we look at the effect of measurement 
variation on power and sample size and the effect of measurement variation when comparing 
measured values to specification limits. 

7. See note 4. 
8. There are many other attributes of the measurement system apart from bias and variation. 

These become important when we wish to improve a system that is not adequate. We can 
stratify results by operators, gages, or time. We can use the data from the basic plan for 
estimating variation to generate clues if we want to reduce the variation in the measurement 
system. 

 
 
 
 
 
 
 

Exercises are included on the accompanying CD-ROM 
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8 
Choosing a Working Variation 

Reduction Approach 
 
 
 

Change is not made without inconvenience, even from worse to better. 

—Samuel Johnson, 1709–1784 
 
 
 

n this stage of the Statistical Engineering algorithm, we select a working approach 
from the seven possibilities described in Chapter 3. You may be tempted to skim over 
this stage, since our directions are somewhat vague. However, without a working 

approach, it is not clear what to do next. If you do take further action, you are implicitly 
adopting a working approach. We believe that explicit consideration of the approach at 

this point will lead to a better choice and produce better results sooner. 
At this stage of the algorithm, we may not know enough to choose the approach that 

will eventually be implemented. Based on what we do know, using both engineering 
knowledge and previous process investigations, we select the working approach and then 
gather the required information to assess its feasibility. So at this point, we are trying to 
pick the most feasible approach with incomplete knowledge. We may have to return to this 
stage of the algorithm a number of times as we obtain more process knowledge. We fix 
obvious faults in the process as we uncover them. 

When a team arrives at the Choose Working Variation Reduction Approach stage, they 
will have the following: 

• The problem expressed in terms of an output characteristic and a baseline 
measure of process performance 

• A goal expressed in terms of the baseline measure tied to the project goal 

• Some knowledge of the process and its behavior (for example, a process map, a 
control plan, results of a baseline investigation and other past investigations, 
applicable science and engineering knowledge, and so forth) 

• Some knowledge of the constraints (for example, economic reality, span of 
control, political and cultural constraints) 

• Confidence in the measurement system unless the problem is defined in terms 
of this system 

105 
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We return to the question of choosing a working approach in Chapter 14, where we 
specifically discuss the consequences of having searched for, and hopefully found, a domi- 
nant cause. In this case, the team will have acquired considerable new knowledge of the 
process behavior. 

We have the following options at this point in the algorithm: 

• Search for a dominant cause of variation. Identifying a dominant cause is a 
prerequisite for reformulation or the cause-based approaches: 

–Fixing the obvious 
–Desensitizing the process to variation in a dominant cause 
–Feedforward control 

• Assess the feasibility of one of the non-caused-based approaches: 

–Feedback control 
–Making the process robust 
–100% inspection 
–Moving the process center 

We consider each approach based on the requirements for that approach and our current 
knowledge of the process. We also consider the likely implementation costs, classified into 
three broad categories: 

• Costs related to determining if the approach can be effective 

• Costs of the change to the process to implement the approach 

• Ongoing costs to maintain the approach 

We incur the first type of cost when we search for a dominant cause, when we try to find 
process settings that are robust or less sensitive to variation in a dominant cause, when we look 
for an adjuster to change the process center, and so on. We incur initial costs such as changes 
to the product or process design, changes to the control plan, training of personnel, and so forth 
when we first implement an approach. Finally, we incur ongoing costs such as the measure- 
ment and adjustment costs needed for feedback or feedforward control and inspection. 

At this first iteration of the Choose Working Variation Reduction Approach stage, we are 
unlikely to have sufficient process knowledge to make a good assessment of the implemen- 
tation costs. We consider implementation costs for each approach in detail in chapters 14 
through 20. 

The best option is always problem specific and we find it difficult to give precise direc- 
tions. Instead, we pose a series of questions that the team should ask. 

 
 
8.1 CAN WE FIND A DOMINANT CAUSE OF VARIATION? 

We need to identify a dominant cause of the variation in order to implement one of the 
cause-based variation reduction approaches. We strongly recommend that the team search 
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for a dominant cause and then decide which of the three to adopt as a working approach. 
We have seen many problem-solving efforts flounder because the team tried to change the 
process without first identifying the dominant cause of the variation. If we know a domi- 
nant cause, we have a much better chance of finding a cost-effective process change that 
will meet the problem goal. 

Despite our strong preference for trying to find a dominant cause, in some problems the 
team may know enough to answer no to this question. 

 
 

Manifold Blocked Port 

In the casting process that makes exhaust manifolds, described in Chapter 2, management 
adopted a project to eliminate a defect called “blocked ports.” The foundry customer detected 
this rare defect only a few times per year. At each occurrence, there was a loss of goodwill 
and an expensive containment effort that typically found no other defective manifolds. 

The project team knew that observing the process to find the cause would likely be 
fruitless since there were very few blocked ports. Changing fixed inputs to see their effect 
was equally hopeless. They decided to look at the feasibility of automated 100% inspection 
to check every manifold for blocked ports. 

 
 

Electric Box Durability 

The management of a firm that built metal boxes for exterior electrical components 
decided to increase the durability of the boxes to satisfy its customers, large utility compa- 
nies. The management had received numerous complaints about premature rusting on 
boxes in service. 

The team considered looking for the cause of the variation in durability. They could trace 
field failures to only a few processing conditions, such as the lot of paint. They could not 
determine the values of most varying inputs for any particular box in the field. The team 
also suspected that the dominant cause of variation was environmental and outside of their 
control. Finally, they had little confidence in the measurement of the failure time as deter- 
mined by the utility companies. 

The team could measure durability in-house by painting standard panels and using an 
accelerated test in a salt spray chamber. They decided not to search for a dominant cause of 
durability variation and instead considered process changes that could increase average dura- 
bility in the salt spray chamber. That is, they adopted Move Process Center as the working 
approach. 

 
 

Comments 

One other reason for not looking for a dominant cause is historical. If many teams have 
failed to find the cause in previous projects, it may be inefficient to keep searching. 

Having recommended looking for the cause in almost all cases, we believe the team 
should consider the four non-caused-based approaches before reaching a decision to search 
for a dominant cause. Based on current knowledge and potential costs, the team may see 
that one of these approaches is feasible. 
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8.2 CAN WE MEET THE GOAL BY SHIFTING THE 
PROCESS CENTER WITHOUT REDUCING 
VARIATION? 

In other words, should we adopt the Move Process Center approach? For example, if the 
baseline histogram matches one of those shown in Figure 8.1, and the goal is to reduce the 
proportion of parts out of specification (specification limits shown by the dashed lines), 
then we can consider this approach. 

To make the approach effective, we need to find a change to some fixed input that will 
shift the center of the process without high cost or large negative side effects. We also must 
be able to maintain the change in the long term. 

 
 

Sand Core Strength 

In Chapter 1, we introduced a problem of excessive breaking of sand cores in a foundry 
operation. The baseline histogram of core strengths is reproduced in Figure 8.2. 
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Figure 8.1 Two cases for shifting the process center. 
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Figure 8.2 Baseline histogram of sand core strength. 
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The team knew they could increase average core strength by increasing the resin con- 
centration in the core molding process. They could easily assess the cost of the change and 
maintain it in the future. The team did not know how much extra resin was needed and how 
well the stronger cores would behave in the casting process. They worried that it would not 
be possible to shake out the core sand if the cores were too strong. Residual core sand stuck 
in the casting is a serious defect. 

Because of the available knowledge, the team adopted Move Process Center as their 
working approach. They planned an experimental investigation to quantify the effects of 
increasing the resin concentration on both core strength and casting quality. 

 
 

Wheel Bearing Failure Time 

A team was assigned a project to reduce warranty costs and customer complaints due to 
failure of a wheel bearing in a light truck model. The failures occurred within the first three 
years of use. Using the warranty database and a record of customer complaints, the team 
focused the problem to the failure of a seal under harsh driving conditions. They developed 
an accelerated test in the laboratory that could reproduce the field failure mode within a few 
hundred hours of testing. The results of five tests to failure for the current design are shown 
in Figure 8.3. 
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Figure 8.3 Wheel bearing seal failure times. 

 
The team decided to look for a design change that would increase the failure time on 

the accelerated test to at least 200 hours for all seals. That is, they adopted Move Process 
Center as their working approach. They rejected the approaches based on finding the 
cause of the failure (what is different about the seals that explains the different failure 
times seen in Figure 8.3) because it was too expensive to collect the necessary data. Based 
on their knowledge of the failure, the team made a design change that they then tested by 
repeating the five-piece investigation. They accepted the risk that the proposed design 
change might prove ineffective in the field, where conditions were different from the 
accelerated test. 

 

 
 

Camshaft Lobe Runout 

We discussed the problem of base circle (BC) runout of a camshaft lobe in Chapter 1. The 
baseline histogram is shown in Figure 8.4. 

The goal of the project was to produce a greater proportion of lobes with smaller 
runout. Recall that runout must be greater than zero and is a measure of variation itself. 
Defining the problem in terms of another output characteristic that is not a measure of vari- 
ation would have been preferred. The team did not expect to directly discover a change to 
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Figure 8.4 Baseline histogram of camshaft lobe BC runout (dashed line shows 

specification limit). 
 
 

the process that would shift the histogram to the left. That is, they initially decided not to inves- 
tigate one or more process changes that might meet the goal. This had been tried in the past 
without any substantial progress. Instead they decided to look for the dominant cause of lobe- 
to-lobe variation. Once the cause was found, they could reconsider which approach to select. 
They were willing to accept the investigation costs with no certainty that they could find the 
cause or that they would adopt one of the cause-based approaches. 

 
 
8.3 CAN WE REDUCE VARIATION BY CHANGING ONE 

OR MORE FIXED INPUTS WITHOUT 
KNOWLEDGE OF A DOMINANT CAUSE? 

If we answer yes, we adopt the Robustness approach. For this approach to work, we need to 
find a new setting for some fixed input or inputs that reduces the effect of the unknown dom- 
inant cause of variation. This approach is often adopted out of desperation after a search for 
the dominant cause has been fruitless. Without knowledge of the dominant cause, it is diffi- 
cult to know what fixed inputs to consider. 

 
 

Transmission Shaft Diameter 

In a grinding process for an output shaft, a transmission component, the team set out to 
reduce shaft diameter variation. They established the baseline performance using process 
control data (every 50th part was measured) from the previous month. The team assessed 
the measurement system and found that it was not a major contributor to the overall variation. 
Having just returned from a course in designed experiments (taught by one of the authors), 
they decided to run an experiment with 16 runs in which six fixed inputs were varied. The 
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inputs included feed rate, speed, coolant concentration, and so forth. Each experimental run 
consisted of grinding five shafts. That is, the team selected robustness as their working 
approach. 

For each run the team calculated the logarithm of the standard deviation of the five 
diameters and then analyzed these 16 performance measures. They found the combination 
of levels of the fixed inputs that produced the smallest value of the performance measure. 

The team then decided to confirm the improved settings of the fixed inputs by running 
these levels for one week under otherwise normal production conditions. They found no 
improvement in the process variation and abandoned the new settings because there was an 
increase in cost. 

The team was disappointed in designed experiments as an improvement tool since they 
had spent a great deal of effort for no reward. What went wrong? The major problem was 
that the experiment set out to reduce short-term diameter variation (variation within five 
consecutive shafts), and it turned out that this was a small component of the baseline varia- 
tion. The team adopted the working approach without sufficient knowledge. In this case, 
the project was doomed by this decision. 

 
 

Speedometer Cable Shrinkage 
 

In a famous positive example of making a process robust, Quinlan (1985) reported on a 
project to reduce both the average and variation in postextrusion shrinkage of a casing for 
a speedometer cable. The team did not find the cause of the shrinkage variation. Instead, 
they chose 15 fixed inputs and selected one new level for each (for each selected fixed 
input, there were two levels, existing and new). They then ran an experimental investigation 
with 16 runs, a highly fractionated design. In each run, approximately 3000 feet of casing was 
produced and four samples were selected haphazardly. The shrinkage was measured for 
each sample. 

Here the team adopted the Move Process Center and Robustness approaches simulta- 
neously, since reducing variation or shifting the process center could improve the process. 

For each run, the team calculated a performance measure using the four shrinkage values. 
They then analyzed the performance measures to isolate the best combination of levels to 
shift the average shrinkage towards zero and reduce the variation. The new levels were con- 
firmed and the process was much improved. 

 
 

Comments 
 

As shown by the speedometer cable shrinkage example, the robustness approach can be 
successful, but we feel it is better to first look for the dominant cause. The more you know 
about the dominant cause of variation, the greater the chance you will select fixed inputs to 
change that will mitigate the variation in the dominant cause. 

In the transmission shaft example, the team would have been much better off if they 
had recognized that the dominant cause of variation acted over a longer time frame than 
five consecutive parts. They would not have planned the experiment as they did with this 
extra knowledge. 
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8.4 DOES THE PROCESS OUTPUT EXHIBIT A 
STRONG PATTERN OVER TIME? 

 
If the answer is yes, we can predict future output values from present and recent values. If 
the team also knows of a cost-effective quick way to adjust the process center to compensate 
for the deviation between the prediction and the target (or feels they could find one), feed- 
back control is feasible. A feedback controller does not require knowledge of a dominant 
cause. 

 
 

Fascia Film Build 
 

In the fascia film build example, introduced in Chapter 3, a team wanted to reduce varia- 
tion in the paint flow rate. A baseline investigation showed the time pattern in the flow rate 
given in Figure 8.5. 

The baseline data provided evidence that feedback may be feasible. The flow rate vari- 
ation was much smaller over the short term than over the long term. Since the team also 
knew they could use a valve to adjust the flow rate, they adopted feedback control as the 
working approach. They planned to assess the benefit by simulating the effect of the feed- 
back control scheme on the baseline data. At the same time they could assess the costs of 
the adjustments. 
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Figure 8.5   Variation in flow rate over time. 

 
 

Parking Brake Tightness 

In a vehicle assembly process, there was a problem with excess variation in parking brake 
tightness that led to considerable rework. A baseline investigation showed there were runs 
of high and low tightness values. The dominant cause acted slowly over time. Based on this 
knowledge, the team suspected that a dominant cause of tightness variation was the length 
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of the front cable. The cables were delivered in batches and the average length differed sub- 
stantially from batch to batch. 

The team did not further explore front cable length; the cable arrived as part of an 
assembly, so it could not be measured in the plant. Because the dominant cause changed 
from batch to batch, they decided to consider feedback control. 

The team knew that changing the depth of an adjustment nut would change parking 
brake tightness. To quantify the effect of this adjuster they planned an investigation where 
they would try different adjustment depths for a number of vehicles. In addition, the team 
still needed to decide on an adjustment rule, that is, when an adjustment should be made 
and by how much. 

 
 

Comments 
 

In the fascia film build and parking brake tightness examples, we saw a time pattern in the 
run chart of the output from the baseline investigation. We recommend a team use a sam- 
pling protocol in the baseline investigation that lets them see any systematic pattern in the 
output over time. 

Patterns in the variation over time can have many forms. Some processes are setup 
dependent; that is, once a setup is complete, there is little variation from part to part. Many 
machining and stamping processes exhibit this behavior. If the team discovers such a pattern, 
and the output of the process can be measured immediately after setup and there is a low 
cost and quick way to adjust or redo the setup, then feedback control could be selected as 
the working approach. 

In cases where feedback control is feasible, the output varies systematically over 
time. This implies that the dominant cause also exhibits the same time pattern. With this 
clue, it may be more economical to try to find the dominant cause than to adopt feedback 
control as the working approach. If the dominant cause is found, the team can address the 
cause directly, for example by applying feedback control to the cause. In the parking 
brake tightness example, feedback control was applied to the output despite partial 
knowledge of the dominant cause. This knowledge was used to help design the feedback 
control scheme. 

 
 
 
8.5 SUMMARY 

 
The thought process involved in choosing a working approach is summarized in Figure 8.6. 
Questions given at the same vertical height are addressed in either order or simultaneously 
depending on the problem context. 
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Figure 8.6 Flowchart to help choose a working approach before a dominant cause is known. 
 
 

Key 
Points 

 

• We recommend the team select a working approach from the seven possible 
variation reduction approaches to guide further efforts: 
–Fixing the obvious using knowledge of a dominant cause 
–Desensitizing the process to variation in a dominant cause 
–Feedforward control based on a dominant cause 
–Feedback control 
–Making the process robust 
–100% inspection 
–Moving the process center 

• The following questions can help to select the working approach: 
–Can we find a dominant cause of the unit-to-unit variation? 
–Can we meet the goal by shifting the process center without reducing variation? 
–Can we reduce variation by changing one or more fixed inputs without knowl- 

edge of a dominant cause? 
–Does the process output exhibit a strong pattern in the variation over time? 

• We strongly recommend the team search for a dominant cause of variation, 
unless there is clear evidence that one of the non-cause-based approaches is 
likely to be feasible. 

• After choosing a working approach, we conduct further process investigations 
to determine whether the selected approach is feasible. 

• In making a choice of working approach, we try to assess potential implemen- 
tation costs. 
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PART III 
Finding a Dominant Cause of 

Variation 
 
 

How often have I said to you that when you have eliminated the impossible, 
whatever remains, however improbable, must be the truth? 

—Sir Arthur Conan Doyle (as Sherlock Holmes), 1859–1930 
 

 
n many applications, identifying a dominant cause of variation leads to cost-effective 
process improvement. We recommend finding the dominant cause using the method of 
elimination and the idea of families of causes. With the use of observational plans and 

leveraging (comparing extremes), the search for a dominant cause of variation can be inex- 
pensive and nondisruptive to the production process. We discuss the tools and methods used 
to support the search for a dominant cause. We introduce planned experiments to verify a 

suspect cause is dominant. 
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Statistical Engineering variation reduction algorithm. 
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9 
Finding a Dominant Cause Using the 

Method of Elimination 
 
 
 

We shall learn to be imaginative about what is causing product variability 
by going to the manufacturing area and figuratively talking to the product. 

—Dorian Shainin, 1914–2000 
 
 
 

n most problems, the team will decide to try to find a dominant cause before assessing the 
feasibility of a specific variation reduction approach. We recommend a search strategy 
based on the method of elimination to find a dominant cause. That is, we concentrate on 

ruling out possibilities rather than looking directly for the dominant cause. In this chapter, we 
discuss the principles behind this strategy; in chapters 10 through 13, we provide investiga- 
tion plans, analysis tools, and numerous examples to demonstrate how it can be implemented. 

The method of elimination can be explained using the familiar game 20 Questions. In 
one version of this game, we choose one of the 130,000 entries in the Canadian Oxford 
Dictionary (2002). We then give you the dictionary and ask you to determine the selected 
word using a series of yes/no questions. A poor strategy is to start asking about specific 
words. Unless you are lucky, you are quite likely to be exhausted before you get to the cor- 
rect word. A much better strategy is to divide the dictionary in half and ask if the unknown 
word is in the first half. Whatever answer you get, you will have eliminated half the words 
in the dictionary with a single question. If you divide the remaining words in half at each 
iteration, you can find the unknown word with at most 17 questions (217 is just greater than 
130,000). 

We apply the same idea to search for a dominant cause. We divide the set of all causes 
into families and then conduct an investigation to rule out all but one family. We repeat the 
exercise on the remaining family until a single dominant cause remains. 
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9.1 FAMILIES OF CAUSES OF VARIATION 
 

In any process, there are many varying inputs that could have a large effect on the output. 
We partition the set of all such inputs into two or more families with common features such 
as the time frame or location in which they act. Then we use available data, investigations, 
and knowledge of the process to rule out all but one family as home of the dominant cause. 

 
 

V6 Piston Diameter 
 

Consider again the problem of reducing variation in V6 piston diameters introduced in 
Chapter 1. Figure 9.1 is a process map. 

To start we divide the causes (varying inputs) into two families: measurement and the 
rest of the process. The measurement family includes all causes associated with the final 
gage and its operation and the rest of the process family includes all other causes. More 
specifically, the measurement system family includes those inputs that can change if we 
repeatedly measure the same piston: the operator, the position of the piston in the fixture, 
and the time since calibration of the gage, for example. The rest of the process family 
includes raw materials, the path through the machining process, the mold number, and so 
on. The dominant cause of diameter variation may be in either family. 

To document progress in the search, we portray the families in a diagnostic tree. The top 
box describes the problem and the families of causes are listed below. The first part of the 
diagnostic tree for the V6 piston diameter problem is shown in Figure 9.2. As we proceed 
through the search, defining and eliminating families of causes, the diagnostic tree will grow. 

To eliminate one family of causes, we carry out an investigation, as described in Chapter 7, 
to learn how much of the baseline variation can be attributed to the measurement system. 
In this investigation, two operators measured three different pistons three times each over 
two different days. The variation in the measurement system was relatively small since the 
discrimination ratio D was 8.3. We eliminate the measurement system family and concen- 
trate on the rest of the process family as the home of the dominant cause of variation. We 
cross off the eliminated family on the diagnostic tree. 

We always start with the two families: the measurement system and the rest of the 
process. We have explicitly included this partition of the causes in the Check Measurement 
System stage of the Statistical Engineering algorithm. 
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Figure 9.1 The piston machining process map. 
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Figure 9.2 Diagnostic tree for piston diameter variation. 

 
 

Bottle Label Height 

In a bottling operation, management raised a concern over crooked and misplaced labels. The 
ideal label was a set distance below the bead on the neck of the bottle. The output characteris- 
tics were the average label height and the difference of the maximum and minimum heights as 
the bottle was rotated. The team assessed the measurement system that used a feeler gage and 
found that the measurement variation was small relative to the baseline for both characteristics. 

Next, the team decided to proceed with the search for a dominant cause by partitioning the 
remaining causes into the bottle-to-bottle and the time-to-time families. The bottle-to-bottle 
family includes inputs that change quickly from one bottle to the next in the labeling process. 
The time-to-time family contains causes that vary more slowly and change substantially only 
from one hour to the next. To assess the relative effect of the two families, the team measured 
the label height for five consecutive bottles selected each hour for two shifts, a total of 16 hours. 

We show the diagnostic tree for average height in Figure 9.3. Since there are two out- 
puts in this problem, the tree may be different for each. 
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Figure 9.3 Diagnostic tree for average label height. 
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Engine Oil Consumption 
 

A team was assigned the task of reducing warranty costs due to oil consumption in a truck 
engine. The engine was built at two different plants that had common equipment, common 
suppliers, and similar manufacturing processes. From the warranty database, the team 
noted that while the two plants had produced roughly the same number of engines, over 
90% of the more than 1500 claims were associated with engines built in one of the two 
plants. 

Here we divide the causes into two families: the within-plant and plant-to-plant families 
(see Figure 9.4). The within-plant family contains causes that vary in the same way for each 
plant, such as characteristics of components from a common supplier. The plant-to-plant 
family contains causes that have different values in the two plants, such as characteris- 
tics of components from different suppliers or differences in operating procedures. 

Using the warranty data, the team ruled out the within-plant family. The dominant 
cause lived in the plant-to-plant family. To continue the search for a dominant cause, the 
team focused on the few varying inputs that were different in the two plants. 

In this example, the team did not check the measurement system. The discrepancy in 
warranty claims was so great that they assumed that there was a real difference between the 
plants. The team made huge progress using the data available from the warranty system 
because the plant-to-plant family had relatively few causes. 

Surprisingly, another team working on the same problem from an engineering per- 
spective had decided (incorrectly) that changing the design of the PCV valve could solve 
the problem. The second team had implicitly adopted a robustness approach. By changing 
the PCV valve, they hoped to reduce the effect of the unknown dominant cause of oil con- 
sumption. Since there was a common supplier, no characteristic of the PCV valve could 
be a dominant cause because there was no systematic difference in the valves from plant 
to plant. 

There are many ways to partition causes into families and different investigations and 
tools to eliminate all but one family. We look at numerous examples in the next three chapters. 
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Figure 9.4 Partition of the causes of oil consumption. 
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9.2 FINDING A DOMINANT CAUSE USING THE METHOD 
OF ELIMINATION 

To find a dominant cause, we apply the method of elimination repeatedly. There are three steps: 

1. Divide the remaining suspect causes into two or more families. 
2. Plan and carry out an investigation to eliminate all but one family as the 

home of the dominant cause. 

3. Repeat steps 1 and 2 until only one suspect for the dominant cause remains. 

The search for a dominant cause is complete if we find a cause or family that is specific 
enough to allow us to choose a variation reduction approach. In the engine oil consumption 
example, the dominant cause was in the plant-to-plant family. However, the team could not 
address this cause directly unless they were willing to shut down one plant! The team con- 
tinued searching for a more specific cause in the identified family. 

In some cases, we may stop the search when there are only a few possible causes left 
because it is more efficient to identify the dominant cause using an experimental plan (see 
Chapter 13). 

 
 

V6 Piston Diameter 

Consider again the V6 piston diameter example, discussed earlier in this chapter, where the 
problem was excess variation in piston diameter. The first investigation eliminated the 
measurement system family. Next, the team looked at two location-based families as 
shown on Figure 9.5. 
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Figure 9.5 Diagnostic tree for V6 piston diameter variation. 
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The team planned an investigation in which they measured the diameter of 96 pistons 
after Operation 270 and at the final gage. This investigation eliminated the operations 
downstream from Operation 270 as the home of the dominant cause. 

The team concluded that the diameter measured just after Operation 270 was the dom- 
inant cause of variation in the final diameter. This finding did not surprise the team, who 
understood the functions of Operation 280 through 310. However, by verifying that the domi- 
nant cause lived in Operation 270 or upstream, they had made substantial progress. The 
order in which the pistons are measured at the final gage was not the same as the order in 
which they were machined, whereas the order of production was preserved much better in 
the machining operations up to Operation 270. The preservation of order made it much 
easier to track pistons through the process and thus made further investigation easier. 

The team was unable to directly address the diameter variation at Operation 270. They 
decided to reformulate the problem and to search for a dominant cause of diameter varia- 
tion as measured after Operation 270. At the same time, they compared the measurement 
system at Operation 270 to the final gage. While the Operation 270 measurement system 
was not the home of a dominant cause of variation, the team discovered the relative bias 
between the Operation 270 and final gages as described in Section 5.2. They fixed this 
problem by changing an offset in the Operation 270 gage. They also knew that this obvious 
fix would not reduce diameter variation at either gage. 

Next, the team decided to look at three families of causes of Operation 270 diameter 
variation as documented on Figure 9.6. 

The team planned another investigation with 96 pistons. For each piston, the diameter 
was measured before and after Operation 270. Each parallel stream at Operation 270 
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Figure 9.6 Diagnostic tree for V6 piston diameter problem after Operation 270 investigation. 
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processed half the pistons. Based on the observed data, the team concluded that the Oper- 
ation 270 stream-to-stream family was the home of the dominant cause. They eliminated 
the upstream family. They concentrated their efforts on identifying what was different 
between the two streams that could explain the observed difference in process behavior. 

At Operation 270, the grinders were of the same design, and there was a common source 
of unfinished pistons and a common control plan. However, there were different operators. 
The team interviewed the operators and found that each operator ran his machine differently; 
each was convinced that the method they used was superior to that in the written control plan. 

Now the team suspected the dominant cause was a difference in the method of process 
control in the two streams. The final step was to verify this suspicion. We give the com- 
pleted diagnostic tree in Figure 9.7. 

We use the diagnostic tree to document the search for the dominant cause. We can add 
additional information to the diagram to support the logic of eliminating families. Remem- 
ber that the tree is built up as we iteratively apply the method of elimination. We do not start 
by constructing the whole diagram. 
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Figure 9.7 Final diagnostic tree for excessive variation in V6 piston diameter. 
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9.3 IMPLEMENTING THE METHOD OF ELIMINATION 

In this section, we give some general suggestions for implementing the method of elimina- 
tion that we illustrate with the examples in subsequent chapters. 

Using the method of elimination, we do not start by listing possible causes and classi- 
fying them into families.1 Instead, we start by considering broad categories that define the 
families. This is a major difference from other problem-solving algorithms. As we obtain 
more process knowledge, we subdivide the remaining families to further narrow down the 
suspects for a dominant cause. Our goal is to end up with a single cause or, in the worst 
case, a short list of possibilities. The final step is to verify (and select in the case of a short 
list) that we have indeed found a dominant cause. 

For most problems, there are a large number of possible dominant causes and many 
ways to divide them into families. How do we start and proceed? We make the following 
suggestions. 

 
Check the Measurement System First 

To start, we always divide causes into those associated with the measurement system and 
those associated with the rest of the process. We can use a measurement system investigation 
as described in Chapter 7 to eliminate one of these two families. 

 
Use the QPDAC Framework 

The search for a dominant cause involves many process investigations. To help plan, execute, 
and draw conclusions from such empirical investigations, we use the five-step QPDAC 
framework as described in Chapter 5. 

The investigations used to support the search for a dominant cause share many features. 
Using the QPDAC terminology, the target population is all units produced by the process 
now and in the future. The target population stays the same unless we reformulate the prob- 
lem. The attributes of interest are the components of the output variation attributable to the 
different families or individual causes. 

In the Plan step, we design the investigation to avoid large study and sample errors. 
We are unconcerned with measurement error since we have previously assessed the meas- 
urement system and determined that it is adequate. We use the results from the baseline 
investigation to help make the choice of study population. We choose this population so 
that the dominant cause has the opportunity to act within this population. We then select 
the sampling protocol so that we can estimate the variation attributable to each possible 
family. As always, we balance the statistical considerations against the constraints of cost 
and time. 

Consider the problem of excess variation in average label height introduced earlier in 
this chapter. In the investigation to compare the bottle-to-bottle and time-to-time families 
of causes, the team decided to choose a study population defined by all bottles produced 
over two shifts. They made this choice because in the baseline investigation, where they 
had looked at historical records covering production from over a month, they had seen 
close to the full extent of variation in average label height within each shift. If, instead, the 
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baseline investigation had shown that the dominant cause acted more slowly, for example, 
week to week, they would have needed a longer time frame for the study population. To 
obtain information about the bottle-to-bottle family, the sampling protocol must involve 
selecting some bottles made consecutively. To help avoid sample error, the team selected 
five consecutive bottles every hour throughout the study population. 

In the Find and Verify a Dominant Cause stage of the algorithm, we assume the base- 
line investigation captured the performance of the current and future process with little 
study or sample error. With this assumption, if we see the full extent of variation in the output 
in any subsequent investigation, we are confident the dominant cause has acted. See further 
discussion of the full extent of variation later in this chapter. 

 
Think About Families of Causes and the Possible Types of Investigations 

In chapters 10 through 12, we present a variety of process investigations useful in the 
search for a dominant cause. Each type of investigation aims to compare different families 
of causes. We may decide to compare: 

• Location-based families (stratification) 

• Time-based families 

• A combination of time- and location-based families (multivari investigation) 

• Upstream and downstream families (variation transmission investigation) 

• Assembly and component families (component swap) 

• The effects of individual inputs (group comparison, input-output investigation) 

The best choice of investigation depends on the problem, the process, and current 
process knowledge. At the start of the search, we want to compare large families of causes 
with the hope of eliminating many causes quickly. Later in the search, we are more willing 
to look at individual causes. 

 
Use Available Data 

There are often data available that have been collected for other purposes such as routine 
process control, scrap accounting, or warranty cost assessment. We also have the data from 
the baseline investigation. We suggest the team examine the available data and how it was 
collected by running through the steps of QPDAC. If the team has confidence that there is 
little study and sample error, they can use the data to rule out families of causes. Here, we 
start with the data and then think about the families. 

The use of the warranty data in the engine oil consumption problem is a good exam- 
ple. For another example, in Chapter 3, we briefly discussed a problem where there was 
a high frequency of rejected engines at the valve train test. Every engine was tested and 
the results were recorded in a database. There were three test stands that operated in par- 
allel and engines were assigned to a stand haphazardly. The stands checked a number of 
characteristics and an engine was rejected if one or more characteristics was out of spec- 
ification. Rejected engines were torn down and repaired. There were many “no fault 
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Table 9.1   First-time reject rate by test 
stand. 

 

Test stand First-time reject rate 

1 12.8% 

2 4.2% 

3 2.8% 
 
 

found” rejects. The test stand operators repeatedly measured a rejected engine without 
teardown because they knew it would often pass with a second or third test. 

A team was assigned the goal of reducing the reject rate. The baseline first-time reject 
rate was about 6.6%. Before conducting an assessment of the measurement system, the team 
used the available data to stratify the first-time reject rate by test stand over a one-week 
period. The results are given in Table 9.1. 

The dominant cause of the high reject rate lived in the measurement system family. The 
team proceeded by looking at causes that could explain the stand-to-stand differences. 

 
Use Knowledge of the Process 

The method of elimination relies on process knowledge both in determining the plan for an 
investigation and interpreting the results. For example, in the V6 piston diameter example 
discussed earlier, the team suspected that the dominant cause acted upstream of Operation 
280. They chose to split the process after Operation 270 so that they could rule out all the 
downstream operations in a single investigation. 

Knowing what can be measured and where, how easy it is to trace parts through the 
system, when production order is preserved, and so on, is essential in selecting families and 
developing investigation plans. 

Knowledge of the process can help the team interpret the data and determine what 
families are eliminated. For example, in a problem to reduce scratches on a painted fascia, 
the team made a concentration diagram using 100 damaged parts to show where on the part 
the damage occurred. Combining the new knowledge about the location of most of the 
scratches and existing knowledge of the handling system, the team was able to rule out 
large parts of this system as the source of the scratches. 

 
Observe the Full Extent of Variation 

We assume that there is a single dominant cause2 that explains most of the output variation 
seen in the baseline investigation. When we carry out an investigation to eliminate one or 
more families, we need to see most of this baseline variation in the observed output values. 
Otherwise, we may decide the dominant cause is in the wrong family. 

Consider the V6 piston diameter example with some hypothetical data. Suppose we 
start by considering the two families shown in Figure 9.8. Recall from the baseline investi- 
gation that the full extent of diameter variation was 582 to 602 microns. 
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Figure 9.8 Diagnostic tree for hypothetical search. 
 
 

To eliminate one of the families, we track 30 consecutive pistons from each stream at 
Operation 270 and measure the diameters at the final gage. What can we conclude if the 
results are as given by Figure 9.9? 

If we are careless, we conclude that there is a large difference stream to stream and rule 
out the within-stream family. However, in the 60 pistons, the diameter varies only from 588 
to 596 microns, about half the full extent of variation in the baseline investigation. The 
dominant cause has not acted fully during this investigation, and we may be incorrect in rul- 
ing out either family. We need to revisit the plan for the investigation. Perhaps we should 
have collected 30 pistons from each stream spread out over a day rather than 30 consecutive 
pistons to see the full extent of variation. 
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Figure 9.9 Box plot of diameter by Operation 270 stream from hypothetical investigation. 
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Figure 9.10 Box plot of diameter by Operation 270 stream from hypothetical investigation 

showing full extent of baseline variation. 
 

To ensure correct interpretation, we recommend showing the full extent of variation in 
the baseline investigation on all graphical displays of data used in the method of elimina- 
tion. So rather than use Figure 9.9, we present the results as in Figure 9.10. With Fig- 
ure 9.10, we cannot conclude that the stream-to-stream family is home of a dominant cause. 

The message here is that we need to consider the steps in QPDAC carefully even for 
these simple studies to rule out families of causes. We need to specify the study population 
and sampling protocol so that we can be confident that we will see the full extent of varia- 
tion in the output. 

 

 
Use Leverage Where Possible 

Leverage means that we select units with output values at both ends of the full extent of 
variation. Assuming there is a single dominant cause, the values of this cause will be very 
different among these extreme units. This guarantees that we will see the full extent of vari- 
ation in the output. 

Consider again the problem of excessive variation in V6 piston diameters. The full 
extent of variation in the baseline was 582 to 602 microns. After checking the measurement 
system, suppose we select 10 pistons with diameter larger than 600 and 10 with diameter 
less than 584 microns. If the dominant cause acts in the stream-to-stream family at Opera- 
tion 270, we expect almost all of the large pistons will come from one stream and almost 
all the small pistons from the other stream. By selecting pistons that are very different, we 
get leverage in comparing families of causes. 

In the V6 piston diameter example, the team could not conduct such an investigation 
because they could not determine the stream of the finished pistons. 

Leverage was used in the problem of noisy windshield washer pumps introduced in 
Chapter 6. The team established a reliable in-plant measurement system for noise and a 
baseline. They then selected five noisy and five quiet pumps relative to the full extent of 
variation. Next they disassembled and reassembled each pump and noticed that there were 
dramatic changes in noise levels. The noisy pumps became much quieter and the quiet 
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pumps somewhat noisier when the pump housing was rotated relative to the motor housing 
in the reassembly. The dominant cause of noise was in the assembly family. 

If we exploit leverage, we can use small sample sizes in many investigations. We need 
to ensure that the extreme output values are due to the dominant cause. If the extreme values 
are due to a different failure mode, leveraging may mislead us. By defining a focused prob- 
lem and avoiding outliers, we hope to avoid this occurrence. 

 
Take the Simplest Path 

There are many ways to divide causes into families. For a given partition, you may or may 
not be able to think of a way to investigate the process that will allow you to rule out all but 
one family. In the next chapters, we describe numerous plans for investigations and the cor- 
responding analysis tools. We recommend that you consider each of these plans in the con- 
text of your problem and where you are on the diagnostic tree. Then pick a simple plan that 
can help make progress. 

In theory, you can look at many families simultaneously using a complex plan. This 
seems like a good idea because you can greatly narrow the search for the dominant cause 
with a single investigation. However, we strongly recommend using a small number of large 
families to keep the investigation simple. We know that this recommendation generates 
more iterations in the search for the dominant cause. We also know from bitter experience 
that complex plans often fall apart due to logistical difficulties and production pressures. 

Most of the plans for ruling out families of causes are observational. We strongly rec- 
ommend observational plans, where we “listen to the parts,” over experimental plans that 
require an intervention in the process. Experimental plans are difficult to manage and 
expensive to execute in the production environment. 

 
Be Patient 

To use the method of elimination, we need to plan, execute, and analyze the results of a number 
of simple investigations. To be successful, we need to avoid the temptation to jump to a spe- 
cific cause too soon. As consultants, we have met strong resistance from process managers 
when we suggested that we plan to conduct several investigations to find the cause of variation. 
The usual reaction is to ask that we get it over with quickly using a single investigation. In man- 
agement review meetings, we have seen problem-solving teams struggle with the question, 

“Well, have you found the cause (or solution) yet?” 

The answer, “No, but we have eliminated a lot of possibilities,” can be hard to defend 
if the problem is urgent and substantial resources have been committed to its solution. On 
the other hand, trying but failing to find the cause with a single complicated investigation 
is even harder to defend. 

 
Reconsider the Variation Reduction Approach 

Sometimes the method of elimination fails. We may have identified a particular family as 
home of the dominant cause, but we cannot see how to split this family further. We are left 
with two choices. We can begin testing the remaining individual suspects using the methods 
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described in chapters 12 and 13. Alternately, we can abandon the search and adopt a varia- 
tion reduction approach that does not require the identification of a dominant cause. We 
still use any knowledge gained about the family containing the dominant cause. 

 
 
 
 

Key 
Points 

• To find the dominant cause of variation, partition the possible causes into fami- 
lies and use the results of an investigation to eliminate all but one family as the 
home of the dominant cause. Iterate to further subdivide the remaining families 
until a dominant cause is found. 

• “Let the process or product do the talking.” Observational data can provide 
strong clues about a dominant cause of variation. 

• Document the search for a dominant cause using a diagnostic tree. 
• Implementation suggestions: 

–Check the measurement system first 
–Use the QPDAC framework to help plan the investigations 
–Use available data 
–Use knowledge of the process 
–Observe the full extent of variation 
–Use leverage where possible 
–Take the simplest path 
–Be patient 
–Reconsider the variation reduction approach 

 
 

Endnotes (see the Chapter 9 Supplement on the CD-ROM) 

1. The traditional strategy to find the cause of a problem starts by listing all the possible causes 
in a cause and effect diagram. We compare this strategy to the use of families and the method 
of elimination in the chapter supplement. 

2. The method of elimination relies on there being one or two dominant causes. In the chapter 
supplement, we discuss what happens when this assumption does not hold. 

 
 
 
 
 

Exercises are included on the accompanying CD-ROM 



 

I 

 
 

10 
Investigations to Compare Two 

Families of Variation 
 
 
 

The world is full of obvious things which nobody by any chance ever 
observes. 

—Sir Arthur Conan Doyle (as Sherlock Holmes), 1859–1930 
 
 
 

n this chapter, we describe some plans and the corresponding analysis to compare two 
families of causes. We concentrate on a single iteration of the method of elimination 
where the goal is to eliminate one of the two families. For each example, we assume that 

the team has successfully completed the Define Focused Problem and Check Measurement 
System stages of the variation reduction algorithm and has decided to search for a dominant 
cause of variation. 

We use plans that meet the criteria discussed in Chapter 9: 

• Keep it simple. 

• Use available data. 

• Observe the full extent of variation in the output. 

• Exploit leverage if possible. 
 
 
10.1 STRATIFICATION 

With stratification (Kume, 1985), we divide parts into distinct groups based on their source. 
For example, we may stratify by machine, mold, line, gage, plant, location within the part, sup- 
plier, operator, and so on. 

Using stratification, we can assess whether the dominant cause impacts each group in 
the same way or each group in different ways. A dominant cause that impacts different 
groups differently is said to act in the group-to-group family. If such a cause is present, we 
will see large differences among the group averages and low variation within each group. 
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Casting Scrap 

The baseline scrap rate for a casting defect was 2.4%. The castings were molded four at a 
time with cavities labeled A, B, C, and D. The cavity label was molded into the casting. 

The team decided to stratify the causes into the cavity-to-cavity family (also called the 
among-cavity or between-cavity family in other references) and the within-cavity family. 
We have: 

• Cavity-to-cavity family: causes that affect different cavities differently 

• Within-cavity family: causes that affect each cavity in the same way 

The team classified 200 scrap castings by cavity as shown in Table 10.1. Because the 
proportion of scrap castings from each cavity was about the same, the team ruled out the 
cavity-to-cavity family. The dominant cause affected all cavities in the same way. 

In Table 10.1, we compared the number of scrap castings from each cavity directly 
because there was equal volume from all four cavities. If the cavity volumes were not the 
same, we would have compared the percent scrapped from each cavity. 

 
 

Table 10.1   Scrap stratified by cavity. 
 

Cavity Number of castings 

A 58 

B 51 

C 43 

D 48 

Total 200 
 

Rod Thickness 

In Chapter 6, we looked at an example where the goal was to reduce thickness variation in 
a connecting rod at a grinding operation. The team established a baseline and found the full 
extent of thickness variation was 2 to 59 thousandths of an inch (recorded as a deviation 
from a particular value). 

In the baseline investigation, the team measured thickness of each sampled rod at four 
positions. The data are given in the file rod thickness baseline. With these data, we can 
compare the family of causes that produce different thickness within each position to the 
family of causes that act from position to position. 

In Figure 10.1, we plot thickness by position. Since we are using the baseline data, we 
are guaranteed to see the full extent of variation for the output, given by the dashed horizon- 
tal lines. Position 3 has a smaller average thickness than the other positions. There is a 
cause in the position-to-position family that produces this difference. However, we can 
see that this cause is not dominant by imagining the plot with the average thickness 
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Figure 10.1 Rod thickness stratified by position (dashed horizontal lines give the full extent of 

variation). 
 
 

aligned for each position.1 The variation within each position is a substantial part of the over- 
all variation. We cannot eliminate all the out-of-specification rods without reducing the 
within-position variation. Of course, we will implement an obvious fix to better align 
the thickness center at Position 3 if available. 

 
 

Camshaft Lobe Runout 

There are 12 lobes per camshaft in the problem with excess base circle (BC) runout 
described in Chapter 1. In the baseline investigation, the team measured BC runout on all 
lobes for nine different camshafts selected each day for 12 days. We can stratify the causes 
into the lobe-to-lobe and within-lobe families. 

• Lobe-to-lobe: causes that affect different lobes differently 

• Within-lobes: causes that affect each lobe in the same way 

We use these data, given in camshaft lobe runout baseline, to try to eliminate one family 
of causes. Here again we are guaranteed the full extent of variation since the data came 
from the baseline investigation. 

We can see the variation due to the within-lobe and lobe-to-lobe families in Figure 10.2. 
The center lobes (numbers 5–8) have much lower averages and standard deviations than 
do the end lobes. 

We cannot eliminate either family based on the data. However, we get some valuable 
clues. The dominant cause is an input that acts in both families or involves inputs from both 
families.2 We redefine the families. Since it is difficult to think of good labels, we proceed 
based on a diagnostic tree as given in Figure 10.3. 

In the subsequent search, the team looked for causes that could explain the difference 
between the middle and end lobes and eliminated any that could not. 
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Figure 10.2 Camshaft journal runout by lobe (dashed horizontal lines give the full extent of 

variation). 
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Figure 10.3 Diagnostic tree for camshaft lobe runout. 
 
 

Comments 

We can often use stratification with existing data for any multistream process if we can 
identify the stream associated with each part. Some examples are parallel processing steps, 
multiple suppliers, gages, product sources, operators, and so on. We saw two examples in 
Chapter 9: first, when oil usage warranty claims were stratified by the plant where the 
engines were built, and second when rejected engines were stratified by the test stand. 

For a continuous characteristic, a box plot (using either the box summary or individual 
values depending on the data volume) is a convenient way to present the data to display the 
variation within groups and group to group. Adding dashed horizontal lines shows if we 
have seen the full extent of variation. The easiest way to assess the contributions of the two 
families is to shift the boxes (or individual values for each group) in your mind so that they 
all have the same centerline. The variation that remains is due to the within-group family. 
If this variation is large relative to the full extent of variation, we eliminate the group-to-group 
family as the home of the dominant cause.3 
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10.2 COMPARING TWO TIME-BASED FAMILIES 

For many problems, we can separate causes based on the time frame within which they 
vary. Some causes, such as properties of raw materials and tool wear, change slowly, while 
others, such as position in a fixture and contamination by dirt, can change quickly from part 
to part. We use the term part-to-part to label the family of causes that vary from one part to 
the next in time sequence. An investigation to compare two time-based families is a simple 
special case of a multivari—see Chapter 11. 

In Figure 10.4, we show a schematic of a sampling plan where we measure three 
consecutive parts once per shift. We plan to sample parts until we see the full extent of vari- 
ation established in the baseline investigation. 
 

 
Figure 10.4 Part-to-part and shift-to-shift families. 

 
 

Camshaft Lobe BC Runout 

The plan of the BC runout baseline investigation was to collect nine camshafts per day for 
12 days. To compare the effects of the within-day and day-to-day families, the team plotted 
the runout values by day as given in Figure 10.5. Since the pattern across days was similar, 
they were tempted to eliminate the day-to-day family. 
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Figure 10.5 Box plots of BC runout by day (dashed horizontal lines give the full extent of 

variation). 
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Figure 10.6 Individual values plots of camshaft journal runout by day for Lobe 8 (left) 

and Lobe 12 (right) (dashed horizontal lines give the full extent of variation). 
 

However, recall that the dominant cause must explain the differences between end and 
middle lobes as discussed in Section 10.1. To see if the lobe-to-lobe differences depended on 
the day, the team examined BC runout by day for each lobe separately. Figure 10.6 shows 
the plots for lobes 8 and 12. In the baseline, Lobe 12 exhibited the most runout variation, 
while Lobe 8 gave the least. 

Figure 10.6 suggests there was no interaction between causes that act lobe-to-lobe and 
day-to-day since for each lobe, the pattern in runout is similar across days. The team con- 
cluded the dominant cause acted within each day. Using this conclusion, they could plan 
subsequent investigations over shorter time periods (i.e., one or two days) and expect to see 
the full extent of variation. 

 
Engine Block Porosity 

We introduced a problem of reducing scrap due to porosity in cast-iron engine blocks (Fig- 
ure 10.7) in Chapter 3. Porosity occurs because gas bubbles in the molten iron do not escape 
before the casting hardens. The scrap rate was about 4%, with half detected in the foundry 
(the porosity was visible on the surface) and the rest found after the initial machining of the 
bank faces of the block. 

The team created a new measurement system to determine porosity on a continuous 
scale. The system measured the total hole size across the bank faces based on a classification 
system of hole sizes in 1/64 square inches. The team checked the measurement system and 
judged that it was adequate. With this measurement system, there was not a direct transla- 
tion to the decision to scrap a block since that decision depended critically on the location 
of the porosity, not just the total size. 

Although a new output was defined, the team did not establish a new baseline. The full 
extent of variation in the new porosity measure could have been easily determined by 
measuring porosity using the new continuous scale on a large number of blocks. The team 
decided not to take the time to establish the baseline for the new measure of porosity. This 
decision introduced the risk that they would make the wrong decision about the identity of 
a dominant cause. 
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Figure 10.7 Plastic scale model of the engine block. 
 
 

The team decided to compare block-to-block and time-to-time families as shown in 
Figure 10.8. The block-to-block family includes causes that change quickly from one block 
to the next as they are poured. The time-to-time family includes causes that change more 
slowly. 

The team marked five consecutive blocks at the start of every hour for eight hours. 
They located the 40 blocks after the bank faces were machined and measured the porosity. 
Of the 40 blocks, 3 would have been rejected due to porosity had they been subject to the 
regular production inspection. This exceeded the historical reject rate, so the team was con- 
fident that the dominant cause was acting during the investigation. The data are stored in 

 the file engine block porosity multivari. 
 
 
 
 

Excessive porosity 
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Process 
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Figure 10.8 Diagnostic tree for excess porosity. 
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Figure 10.9 Multivari chart of block porosity versus hour. 

 
 

We created the plot in Figure 10.9 using the multivari routine in MINITAB (see Appen- 
dix C). The dots on the plot correspond to the individual porosity values. The five block 
porosity averages are joined from hour to hour. We see large differences in the average 
porosity over time relative to the variation of the porosity within most hours. Based on this 
observation, we eliminate all causes, such as mold dimensions, that act from block to block. 
The average porosity (and the variation) is highest in hours 5 and 8. The team noted that 
these were times when the process was neglected due to lunch and preparations for the end 
of the shift. Combining this process knowledge with the patterns seen in Figure 10.9, the 
team looked for causes that behaved differently during these special times.4 

 
 
10.3 COMPARING UPSTREAM AND 

DOWNSTREAM FAMILIES 

We can divide causes into families based on where in the process they act. If we represent 
the process as a series of operations, we can split the causes in terms of whether they act 
upstream or downstream from a particular point. 

When comparing upstream and downstream families we use a variation transmission 
investigation. We want to determine whether variation observed at an intermediate opera- 
tion is transmitted through the downstream operation or if the downstream operations add 
substantial variation. We consider variation transmission investigations involving more than 
two process steps in Chapter 11. 

 
 

Camshaft Lobe BC Runout 

The team had discovered that for Lobe 12, the dominant cause of BC runout variation acted 
within days. From the baseline investigation they knew that the full extent of runout variation 
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Figure 10.10 Camshaft process map. 
 
 

was 2.6 to 33.9. Using the process map (Figure 10.10), they first split the remaining causes 
into two families: 

• Causes that act downstream of heat treatment 

• Causes that act in heat treatment or upstream 

The team selected 32 parts over the course of one day. There were four camshafts from 
each of the eight lobe grinders. One camshaft from each grinder was processed on each 
heat treatment spindle. BC runout was measured after the heat treatment and after the final 
step of the process on each lobe. The data for Lobe 12 are in the file camshaft lobe runout 
variation transmission. 

Figure 10.11 shows a plot of the Lobe 12 final BC runout versus the BC runout after 
heat treatment. Similar plots were produced for the other lobes. Across all the lobes, the 
final runout variation matched the baseline variation. Using Figure 10.11, we can separate 
the two families: 

• Downstream family—causes that act downstream of heat treatment 

• Upstream family—causes that act in the heat treatment step or upstream 
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Figure 10.11 Lobe 12 BC runout after heat treatment and final (dashed lines give full 

extent of variation). 
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Figure 10.12 Lobe 12 BC runout before and after heat treatment (dashed lines give full 

extent of variation in final runout for comparison). 
 
 

The plot shows a strong relationship between runout after heat treatment and at the end 
of the process. If we hold fixed the runout after heat treatment, there is little variation in 
final runout. We eliminate the downstream family that includes the straightening and lap- 
ping operations as the home of the dominant cause. The variation in runout is coming from 
the upstream family. 

In the investigation, the team also measured runout for all lobes before the heat 
treatment step. Figure 10.12 shows very little relationship between the BC runout before 
and after heat treatment. If we hold fixed the runout before heat treatment, we see most 
of the full extent of variation after heat treatment. The team concluded that the dominant 
cause acts in the heat treatment. They eliminated all causes that act upstream of the heat 
treatment. 

 
Cylinder Head Rail Damage 

In the casting of cylinder heads, the problem was excessive scrap due to damaged head 
rails. The damage occurred somewhere in the shakeout and cleaning operations. The heads 
were 100% inspected. 

To eliminate some causes, the team recorded the location of the damage for 100 scrap 
rails on a concentration diagram, a schematic of the part. See Figure 10.13. 

The team noticed that the damage did not occur at random on the rails but was concen- 
trated at particular locations. The nonrandom pattern ruled out several of the steps in the 
cleaning process as the home of a dominant cause. As a result of this simple investigation, 
the process owners canceled the purchase of new equipment ordered to deal with the dam- 
aged rails. The team concluded the dominant cause did not act in the processing step where 
the new equipment would have been installed. 
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Figure 10.13 Concentration diagram showing location of rail damage. 
 
 

Comments 

We can use plans similar to that used in the camshaft lobe runout example to partition the 
causes upstream and downstream from an intermediate operation whenever we can meas- 
ure the output after the intermediate operation. 

In the chapter supplement, we look at other plans and analysis tools for comparing 
upstream and downstream process step families that have more limited application.5 

 
 
10.4 COMPARING ASSEMBLY AND COMPONENT 

FAMILIES 

For an assembled product, we can partition causes into those that reside in the assembly 
operation and those that live with the components. To rule out one of the families, we observe 
whether the output characteristic of a unit changes substantially when it is reassem- 
bled using the same components. This is only possible if we can disassemble and 
reassemble without damaging or changing the components. This type of investigation 
works well for rare defects. 

To exploit leverage, we start with two assemblies with opposite and extreme perform- 
ance in terms of the output.6 In other words, the two selected units show the full extent of 
variation. Next we disassemble and reassemble the units at least three times, each time 
measuring the output. If the output does not change substantially for either unit, we elimi- 
nate the assembly operation as the home of the dominant cause. 
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Power Window Buzz 

A team was charged with resolving a “buzz” problem with a power window regulator. Buzz 
was measured on a seven-point scale. In the baseline investigation, the team found regula- 
tors with scores ranging from 1 to 7. The regulator was assembled from four major compo- 
nents. The team split the causes into two families: 

• Components: causes acting within the four components 

• Assembly: causes acting in the process that puts the four components together 

To eliminate one of these families, the team found two regulators, one that was 
extremely noisy with a score of 7 and a quiet one with a score of 2. They disassembled and 
reassembled the two regulators three times and measured the noise score each time. 
They found that the noise score did not change in either regulator. The team eliminated the 
assembly family and proceeded on the basis that the dominant cause acted in the compo- 
nents. We discuss this example in more detail in Chapter 11. 

 

 
 

Door Closing Effort 
 

High door closing effort was a relatively frequent complaint in a new vehicle owner survey. 
A team worked on the rear doors where there were more complaints. They measured door 
closing effort using a velocity meter that determined the minimum velocity (meters per 
second) necessary to close and latch the door. A baseline investigation showed there was 
considerable door-to-door variation in the velocity and that doors with high velocity were 
difficult to close. 

Using the baseline data, the team selected two cars with extreme velocity values, one 
high and one low. The task of complete disassembly and reassembly of the door was difficult, 
so instead the team decided to remove and replace only the striker. For each car, this was 
repeated five times using production operators and tooling. The data are shown in Fig- 
ure 10.14. The initial values are shown by the horizontal lines and indicate the full extent of 
velocity variation. 

There was a large cause acting in both the assembly and components families. Within 
each car, there was considerable variation as the striker was removed and replaced but 
not the full extent of variation. The door-to-door average velocity differed considerably 
due to differences in the components of the two door systems. The team kept both families 
and worked on each separately. Since the assembly family consisted of only the position 
of the striker, they first took the striker assembly variation as one large cause and 
designed a new fixture to control this variation. Using the new fixture, there was a signif- 
icant reduction in both the velocity average and standard deviation, but not enough to 
meet the problem goal. They also searched for the dominant cause of the remaining vari- 
ation in the components family. 
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Figure 10.14 Closing effort by velocity (initial values from the baseline given by horizontal 

lines). 
 
 

Comments 

Figure 10.15 shows three possible plots of the results of a disassembly-reassembly 
investigation. 

In the left panel of Figure 10.15, the dominant cause acts in the assembly family and in 
the right panel it acts in the component family. In the middle panel, there is an interaction 
between causes in the assembly and component families. For example, the presence of a 
burr on a component may make it difficult to assemble the unit so that it performs consistently. 
If the burr is absent, it is easy to assemble the product to get consistent performance. 

There are several cautions when using this plan to compare assembly and component 
families. It is best to use the original assembly process, tools, and people to avoid study error. 
Otherwise there is a risk that any conclusions will not be relevant for the actual process. Also, 
we must ensure that parts are not damaged or changed in the disassembly-reassembly. 
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Figure 10.15 Hypothetical results for disassembly-reassembly investigation (initial value 

from the baseline given by horizontal lines). 
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Comparing Assembly and Component Families Summary 

 

Question 

In the current process, does the dominant cause act in the assembly or component family? 
 
 

Plan 
 

• Select two assemblies with opposite and extreme output values relative to the full extent of 
variation. 

• Disassemble and reassemble each part three or more times. On each occasion measure the 
output. 

 
Data 

Record the original output values and each new measurement together with the corresponding 
part number, one measurement per row. 

 
Analysis 

 
• Plot the output by part. Use a special symbol to denote the original output values. 

• Use the plot to compare the assembly variation within each part to the difference between 
the two original output values. 

 
Conclusion 

If the assembly variation within each of the two parts is relatively: 

• Large, the dominant cause acts in the assembly family 

• Small, the dominant cause acts in the component family 

Otherwise the dominant cause involves inputs in both the assembly and component families. 

 

10.5 COMMENTS 
 

Binary Output 

With a binary output characteristic and a low rate of defectives, we cannot look at the 
part-to-part family. In the block leaker problem described in chapters 1 and 6, the team 
made a false start. They sampled five consecutive blocks for 20 hours. They tested each 
block for leaks and found two leakers in separate hourly periods. From these data they 
could not eliminate either the block-to-block or hour-to-hour family because of the low 
failure rate. With a high-volume process, we can separate the hour-to-hour and day-to-day 
families by plotting the hourly rate of defectives by day. 

 
Traceability and Order Preservation 

In general, to stratify a process by time or process step we must be able to trace the parts 
measured to a specific time period or processing step. We must also ensure that the sampling 
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plan matches the actual production order. If we call parts consecutive, then they should be 
processed consecutively as far as possible. 

In the engine block porosity problem, the team had to specially mark the molds so 
that they could find the five consecutively molded blocks after the bank face machining. 
Once the blocks were poured, they were not necessarily finished and machined in pouring 
order. In a process that produced brake lines, the problem was a crack in a formed flange 
that led to leakage when the line was coupled to a valve. The crack was found at final 
inspection. The output characteristic was the size of the crack. The team considered an 
investigation to compare the part-to-part and hour-to-hour families. They abandoned this 
plan because the sequence of parts changed so many times in the process. Consecutive 
parts at final inspection were not processed consecutively through earlier process steps. 
The team could not isolate causes that acted in the part-to-part family because of this 
loss of order. 

 
 

Formal Analysis 

In this chapter we have described simple investigations supported by graphical displays 
such as scatter plots, box plots, multivari charts, and defect concentration diagrams. Since 
we are searching for a dominant cause, we can almost always draw the conclusion to elim- 
inate a family without formal analysis procedures. Rarely do we need more formal methods 
such as the analysis of variance (ANOVA)7 or regression analysis (see Chapter 12). 

 
 

What If We Do Not Observe the Full Extent of Variation? 

We must observe close to the full extent of variation in the output to draw conclusions from 
any investigation used in the search for a dominant cause. Otherwise, the dominant cause 
may not change during the investigation and we may only see the effects of nondominant 
causes. In QPDAC language, we have a study or sample error. 

For example, suppose we are comparing part-to-part and time-to-time families. We 
measure five consecutive parts produced at the start of each hour and stop sampling after one 
day, as in the block porosity problem. We plot the data with two different vertical scales in 
Figure 10.16. 

From the left panel of Figure 10.16, we might mistakenly conclude that the dominant 
cause lives in the hour-to-hour family. This conclusion is premature when we examine the 
right panel of Figure 10.16, where the dotted lines show the full extent of variation. What- 
ever the dominant cause and wherever it resides, we have not yet seen its full effect. We 
need to sample for a longer period or in a different way. 

In the engine block porosity example discussed earlier, the team failed to establish a 
baseline in terms of their new porosity measure. As a result, they did not know the full 
extent of porosity variation. They fortunately were able to link the results of the multivari 
with the baseline, established in terms of reject rate. They then assumed the full extent of 
porosity variation was captured in the multivari investigation. 

We can guarantee the full extent of variation by either using baseline data or using the idea 
of leverage where we compare units that are extreme with respect to their output values. We 
use leverage, for example, in investigations to compare the assembly and component families. 
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Figure 10.16 Two multivari charts of the same data with less than full extent of variation 

(dashed horizontal lines give the full extent of variation from the baseline). 
 
 

Some Investigations Show Changes in Variation 
 

Figures 10.2 and 10.9 showed that output variation changed by lobe and by time, respectively. 
Such patterns provide valuable clues about the dominant cause. For instance, in Figure 10.9, 
the difference in porosity variation of the output at hours 5 and 8 may be due to: 

• A difference in the average or range of a dominant cause at different time 
intervals 

• A different relationship between the cause and output in different time intervals 

• A combination of these two reasons8 

In both the examples, the change in variation was accompanied by a change in the 
average output level. To examine a situation where only the output variation changes, 
consider a hypothetical example. Suppose in the V6 piston diameter example discussed 
in Chapter 9, we collect 30 pistons from each stream over one shift so that we see the full 
extent of variation. We plot the results in Figure 10.17. 

The average diameter is roughly the same for the two streams, so stream-to-stream 
differences are not a dominant cause of variation. However, stream B shows substantially 
greater diameter variation than does stream A. This pattern of unequal variation tells us a 
lot about the dominant cause. The dominant cause must act within the stream B family. We 
have eliminated all causes in the stream-to-stream and within-stream-A families. Note that 
this conclusion is more specific than the usual interpretation from stratification where we 
are able to rule out either the within-stream or stream-to-stream families. 

What kinds of causes can explain the behavior seen in Figure 10.17?9 Two possibilities 
are that there was a worn fixture in stream B or that the stream B operator made more fre- 
quent adjustments. 



Chapter Ten: Investigations to Compare Two Families of Variation 147 
 

D
ia

m
et

er
 

 

 
 

600 
 
 
 
 
 
 
 
 

590 
 
 
 
 
 

580 
 
 
 

A B 
Stream 

 
Figure 10.17 Individual values plot of diameter by Operation 270 stream from hypothetical 

investigation (dashed horizontal lines give the full extent of variation from the 
baseline). 

 
 
 
 

Key 
Points 

 

• Simple investigations and graphical analysis tools can provide valuable clues 
about the home of a dominant cause of variation. 

• We often find it useful to divide the remaining possible causes into two families 
of causes such as: 
–Short-time and long-time 
–Group-to-group and within-group 
–Upstream and downstream 
–Assembly and components 
and then carry out a simple investigation to eliminate one family. 

• To avoid study and sample errors, we must observe the full extent of variation in 
the investigation. 

 
 
 

Endnotes (see the Chapter 10 Supplement on the CD-ROM) 
 

1. If we have two families and stratified data, we can use analysis of variance (ANOVA) to 
partition the overall standard deviation into two pieces, one associated with each family. We 
look at the details in the supplement. 
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2. By understanding the possible reasons for an observed pattern in the results of an investigation, 

we can eliminate many suspects. In the supplement, we look more closely at possible explanations 
for the changing average and variation pattern seen in figures 10.2, 10.9, and 10.17. 

3. We identify a dominant cause primarily using graphical displays. We do not use a formal 
hypothesis test. In the chapter supplement we elaborate on why hypothesis tests are not 
appropriate in the search for a dominant cause. 

4. See note 2. 
5. We used a simple plan to compare upstream and downstream families. We examine operations 

swap and randomized sequencing, two more restrictive plans for separating these families. 
6. By selecting units with extreme performance, we can compare the assembly and component 

families with a very limited number of disassembly-reassembly cycles. We examine this 
application of leverage in more detail in the supplement. 

7. See note 1. 
8. See note 2. 
9. See note 2. 

 
 
 
 
 
 
 

Exercises are included on the accompanying CD-ROM 
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11 
Investigations to Compare Three or 

More Families of Variation 
 
 
 

Things which matter most must never be at the mercy of things which 
matter least. 

—Johann Wolfgang von Goethe, 1749–1832 
 
 
 

n Chapter 10, we compared two families of causes using simple plans and analysis 
tools. In this chapter, we consider investigations for simultaneously comparing three or 
more families to identify the home of a dominant cause of variation. We also consider 

the repeated application of investigations based on two families. 
 
 
 
11.1 MULTIVARI INVESTIGATIONS: COMPARING TIME- 

AND LOCATION-BASED FAMILIES 

For many processes, we can construct families of causes based on time and location. Suppose 
the goal of a project is to reduce variation in the weight of a molded part. The process has 
two four-cavity molds that operate in parallel, as shown in Figure 11.1. 

We consider the following families: 
 
Family                 Description 

 
Mold-to-mold Causes that explain differences in weight from one mold to the other 
Cavity-to-cavity   Causes that explain differences in weight among the cavities 

Part-to-part Causes that explain differences in weight among consecutive parts 
Hour-to-hour Causes that explain differences in weight from one hour to the next 
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Figure 11.1 Cavity-to-cavity, mold-to-mold, part-to-part, and hour-to-hour families. 
 

To isolate the effects of each family, we sample from the process in a systematic manner. 
We include parts in the sample that are produced consecutively and over hours from all 
molds and cavities. For example, we might select and measure five consecutive parts from 
each mold and cavity (40 parts in total) every hour for several hours. 

With the proposed sampling plan, we can also detect interactions between the families. 
For example, we can see if mold-to-mold differences change from hour to hour. 

We call this a multivari investigation (Seder 1950a, 1950b, 1990). See also Zaciewski and 
Nemeth (1995) and Snee (2001). We design the sampling protocol to see the variation due to the 
causes within each family of interest. We must be able to trace the parts according to the order and 
location in which they are produced. In the example, each part was labeled by cavity and mold. We 
may have more difficulty finding parts that were molded consecutively at the end of the process. 

We use multivari charts (modified run charts) to display the results of a multivari investi- 
gation. Using MINITAB, we can choose to display the effects of up to four families on the 
multivari chart at the same time. Since charts with many families are difficult to interpret, we 
prefer to use a series of charts, each with fewer families. We can use analysis of variance 
(ANOVA) to quantify the effects of each family. ANOVA is useful when we cannot easily 
determine the dominant family from the multivari charts.1 

We expect the causes in some families to act systematically. For example, if the domi- 
nant cause acts in the cavity-to-cavity family, we will see large differences in the average 
output across the cavities. In other families such as the part-to-part, we expect the causes to 
act haphazardly. We would be surprised to see large differences between the output averages 
(averaged over all cavities, times, and molds) of the first and second part sampled in different 
hours.2 The effects of causes that change from part to part will likely produce haphazard 
variation. We need to plot the data carefully to avoid masking this type of variation. 

We provide three examples of multivari investigations to illustrate the sampling plan, 
the presentation of the data, and the interpretation of the results. 
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Cylinder Head Scrap 

Iron cylinder heads were cast in a green sand process using a four-cavity mold. In the jargon 
of the foundry, each cavity is called a pattern. The project was to reduce scrap at the 
machining operation due to a defect called shift. Shift occurs when the top and bottom parts 
of the sand mold are not properly aligned. Excessive shift causes problems with part location 
in the subsequent machining operation. 

To measure shift, there are locator pads on the top and the bottom of the casting. Shift 
is determined by measuring the relative distance between the two pads in the x (side shift) 
and y (end shift) directions. The team recorded both measurements in inches for each part. 
Here we look at side shift only. The target value is 0. 

The team carried out the baseline investigation by haphazardly selecting and measuring 
20 castings per day from each of five days’ production. The data are given in the file 
cylinder head scrap baseline. Since it was difficult to trace parts through the process, they 
recorded only the day of production. 

We plot side shift stratified by day in Figure 11.2. The average side shift was –0.009 
inches with a standard deviation of 0.017. The values varied from –0.050 to 0.035 inches. 
The team noted that the within-day variation was large. 

The team goals were to better center the process and reduce side shift standard deviation 
by at least 50%. They expected these changes to reduce scrap substantially at the machining 
operation. 

The team used a coordinate measuring machine (CMM) to make the measurements. 
They checked the system with a gage R&R investigation, carried out over a short time 
period, contrary to the recommendations in Chapter 7. The observed measurement variation 
was small relative to the baseline. 

The team decided to look for a dominant cause and planned a multivari investigation to 
rule out a large number of suspects. They considered the four families shown on the diag- 
nostic tree in Figure 11.3. 
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Figure 11.2 Plot of side shift by day. 
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Figure 11.3 Diagnostic tree for side shift. 
 

In order to assess the variation contributed by each of these families, they used the 
following sampling protocol that required tracking and measuring 96 parts: 

1. Sample and measure four parts cast consecutively from each pattern. 

2. Repeat step 1 for castings poured at hours one, three, and five of the day shift. 

3. Repeat step 2 on two consecutive days. 
With this sampling protocol, the team could isolate the contributions to the baseline 

variation from each family in the diagnostic tree. For example, sampling four consecutive 
parts showed whether the variation was dominated by a cause that changed quickly from 
one part to the next, such as the relative positioning of the two halves of the mold onto the 
guiding pins and bushings. 

From the baseline investigation, the team expected the full extent of variation to occur 
within the two days. The major difficulty in implementing the plan was tracing castings 
molded consecutively. The team marked the sand molds so that they could find these castings 
at the end of the shakeout and cleaning process. 

Side and end shift for the 96 measured parts are stored in the file cylinder head scrap 
multivari. For side shift, we see close to the full extent of variation in the histogram shown 
in Figure 11.4, so we know the dominant cause acted during the investigation. 

We look at a variety of plots. To simplify the data display, we start by creating a new input 
called time that combines hour and day. See the section on multivari charts in Appendix C. 

In Figure 11.5, the lines join the average side shift at the six times and the dots give the 
16 side shift values at each time. We recommend that you always select the option (unfor- 
tunately not the default) to plot the individual values on MINITAB multivari charts. From 
Figure 11.5, we see: 

• The time averages are almost constant; that is, there are no systematic differences 
in the side shift between days or hour to hour within days. 

• The variation of side shift within each time is close to the full extent of variation. 
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Figure 11.4 Histogram of side shift values from the multivari investigation (full extent of 

variation in the baseline given by dashed lines). 
 
 
 

The observed pattern cannot be explained by a cause that changes slowly from time to 
time so we are tempted to eliminate the hour-to-hour and day-to-day families. We wait to 
do so until we look for possible interactions with the other families. 

In the left panel of Figure 11.6, we look at a multivari chart with side shift stratified by 
pattern. From the chart, we see large systematic differences among the patterns. The variation 
within each pattern is only about 60% of the full extent of variation. The differences in the 
pattern averages contribute substantially to the baseline variation. We conclude that the 
pattern-to-pattern family contains a dominant cause. 

To deal with the part-to-part family, we need to recognize that variation from consecu- 
tive molds is likely to be haphazard. We create a new input called group with a different 
value for each combination of the four patterns and six times. There are four side shift values 
within each of the 24 groups corresponding to the consecutive castings in that group. 
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Figure 11.5 Multivari chart of side shift by time. 
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Figure 11.6 Multivari charts for side shift versus pattern on left, side shift versus group on 
right. 

 
 

In the multivari chart in the right panel of Figure 11.6, the first four groups 
correspond to the four  patterns in the first hour of day one. The next four correspond to the 
four patterns in the next hour, and so on. The chart shows that the variation within each 
group, as represented by the four dots, is small relative to the baseline variation. 
Alternatively, we see that the side shift averages vary substantially from group to group. 
The pattern-to-pattern family is included in the group-to-group family, which explains 
the group-to-group differences in side shift average seen in the right panel of Figure 11.6. 
We also see that the within-group variation is roughly constant over all sampling periods, 
which means that there is no evidence of interaction between the part-to-part family and 
the other families of causes. We eliminate the part-to-part family from further 
consideration.3 

We now look for possible interactions with the pattern-to-pattern family by constructing 
multivari charts with pattern and time. In Figure 11.7, we show the side shift averages and 
individual values for each time and pattern. The effects of the time family are small for each 
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Figure 11.7 Multivari chart of side shift versus pattern and time. 
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pattern. There is no evidence of an interaction between causes in the pattern-to-pattern and 
time-to-time families. 

We conclude that the dominant cause lives in the pattern-to-pattern family. To reduce 
the variation, we need to focus on causes within this family. 

The team knew how to change the pattern averages by making a one-time adjustment 
to the dies. From the left panel of Figure 11.6, they saw that if they aligned all the patterns 
they would almost meet the project goal in terms of reducing side shift standard deviation. 
Based on the side shift averages in the multivari investigation, they recommended that the 
dies for the top half of the mold be moved to better center the process and remove the 
pattern-to-pattern differences. They also planned a weekly capability study to examine side 
shift by pattern to ensure that the averages did not drift apart again. 

 
 

Camshaft Journal Diameter 
 

In Chapter 7, we introduced a project to reduce scrap and rework due to excess variation in 
the diameter of camshaft journals. At final 100% inspection, the four journal diameters 
(the maximum diameter as the part was rotated) were measured at two locations, front and 
rear. The diameter specifications were ± 12.5 microns, measured from a target value. There 
were also specifications on out-of-round and taper for each journal. Camshafts that did not 
meet the specifications at the final gage were sent to a rework station. There the parts were 
remeasured and either scrapped or reworked. At the beginning of the project, the average 
monthly reject rate at the final gage was 4.7% of which 1.5% was scrap. Management set 
a goal to cut both these rates in half. 

The team focused on journal diameter variation. There was no data storage at the final 
inspection gage. To establish a baseline, the team had two or three camshafts per hour set 
aside before being measured at the final gage to get a sample of 20 parts per day. At the end 
of the day, an operator measured and recorded the diameters for the four journals and two 
locations on each camshaft. This process was repeated for five days. The 800 measured 
values (from 100 camshafts) are stored in the file camshaft journal diameter baseline. The 
average diameter was 2.41 microns, the standard deviation was 5.00 microns, and the 
corresponding capability (Ppk) was 0.67. The operators had centered the process above zero 
to avoid scrap at the expense of rework. There were six parts needing rework and one 
scrapped in the baseline sample. The run chart of diameter over time did not show any clear 
patterns. The full extent of variation was –12.5 to 17.5 microns. The team set a goal to 
improve the process capability (Ppk) to more than 1.20. 

The investigation of the final gage, described in Chapter 7, revealed that there was a  
significant bias in the head that measured the front diameter on the first journal. The 
team removed this bias with the expectation that the process variation would be reduced. 
They decided to repeat the baseline investigation before proceeding. The data are stored in 
the file camshaft journal diameter baseline2 and the performance is summarized in Figure 
11.8. The average, standard deviation, and Ppk for the second baseline investigation were 
2.55, 4.53, and 0.73, respectively. Five out of the 100 parts required rework because 
of oversize diameters. The full extent of variation in the new baseline was –11.8 to 
15.9 microns. 

Before choosing a working approach, the team decided to look for a dominant cause of 
journal diameter variation. We give a high-level process map in Figure 11.9. 
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Figure 11.8 Histogram of journal diameter for second baseline investigation. 
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Figure 11.9 Camshaft production process map. 
 
 

Blank parts arrived in batches from a supplier and were haphazardly assigned to one of 
the two grinders. The grinders used a feedback control system in which 1 part in 10 was 
measured (journal 1 only) and the grinders were adjusted if the diameter was out of specifi- 
cation. The within-process specification limits at the grinder were set based on the assumption 
that the lappers would reduce the diameter by 24 microns. Each grinder had its own gage. 

The team planned a multivari investigation to examine the following families: 
 

Family Description 

Position-to- Causes that explain differences in diameter from one position to 
position the other within the same camshaft 
(within-part) 

Grinder-to- Causes that explain differences in diameter between grinders 
grinder 

Part-to-part Causes that explain differences in diameter among consecutive camshafts 

Hour-to-hour Causes that explain differences in diameter from one hour to the next 

Batch-to-batch  Causes that explain differences in diameter from one batch of incoming 
blanks to the next 

They decided to use three batches (about one day’s production) of blank parts and to 
sample parts once every two hours. They selected five camshafts from each grinder within 
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Figure 11.10 Diameter variation in the multivari (dashed lines give the full extent of 

variation). 
 

an adjustment cycle (part numbers 1, 3, 5, 7, and 9). These parts were specially marked so 
that they could be found at the final gage. They planned to collect 120 camshafts and make 
960 diameter measurements in total. The team carried out the plan without any difficulties. 

The data are recorded in the file camshaft journal diameter multivari. We see the full 
extent of variation in the histogram shown in Figure 11.10. We know the dominant cause 

acted during the investigation. 
We give the multivari charts for position, grinder, and the combined hour and batch 

families in Figure 11.11. We expect these families to show systematic differences in the 
averages if they contain a dominant cause. There is a large difference between the two 
grinder averages indicating a possible dominant cause. There is no evidence of a dominant 
cause acting in the other families. 

Since a dominant cause appears to act in the grinder-to-grinder family, we look for an inter- 
action with the position or batch/hour families using the multivari charts in Figure 11.12. 
Since the effect of grinder does not appear to depend on position or batch/hour, we see no evi- 
dence of any interactions. 

We expect the part-to-part variation to be haphazard.4 To display the magnitude of 
this variation, we create a new input called group that indexes the 192 sampling points 
(8 positions by 2 grinders by 3 batches by 4 hours). Since there appears to be a large 
cause in the grinder-to-grinder family, we define the group input so that the first 96 values 
correspond to grinder A and the second 96 values correspond to grinder B. 

We give the multivari chart of diameter by group in Figure 11.13. 
This chart is difficult to interpret because there are so many groups. However, we can 

see that the variation around the averages is large, which indicates substantial part-to-part 
variation. The magnitude of this variation is roughly the same for each group of consecu- 
tive diameter measurements at a particular position and from grinder to grinder, which indi- 
cates a lack of interaction. We find ANOVA useful here to quantify the effects and augment 
the multivari charts.5 We conclude there are dominant causes within the grinder-to-grinder 
and part-to-part families. 

The team concentrated their efforts on these two families in the search for the dominant 
causes. The team was surprised by the grinder-to-grinder differences. They had not seen this 
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Figure 11.11 Multivari charts of diameter by position, grinder, and batch/hour. 
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Figure 11.12 Multivari charts of diameter by grinder versus position and batch/hour. 
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Figure 11.13   Multivari charts of diameter by group. 

 
 

difference in regular production data because normally there was no traceability to the 
grinder. 

 
Fascia Cratering 

Management assigned a team to reduce scrap and rework on front and rear fascias because 
of cratering. This was a new product, and during the startup period the reject rate was 8.9%. 
The goal was to reduce this rate to less than 1%. The crater defects were not visible directly 
after molding but they could be clearly observed after the fascia was primed. The crater 
rejects occurred over all shifts and were haphazardly distributed over time. The team developed 
and checked a measurement system to count the number of craters after priming. 

In a baseline investigation, the team found that about 80% of the fascias had no craters, 
10% had fewer than 25, and the remaining 10% had more than 25 craters. They decided to 
search for a dominant cause of the craters. From the baseline sample, the team constructed 
a defect concentration diagram that revealed that 75% of the craters were located in the 
front half of the fascia. However, the team could not see how to use this knowledge to rule 
out any family of causes. 

The fascias were produced on two different molding machines. The team planned a mul- 
tivari investigation to examine the fascia-to-fascia, machine-to-machine, and time-to-time 
families. They sampled five consecutive fascias from each of the two machines every four 
hours. They continued the sampling for three shifts (24 hours) resulting in a sample of 60 
fascias. To keep track of the consecutive parts and machine numbers, they marked each fascia 
on the inside immediately after molding. 
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Figure 11.14 Multivari chart from first fascia cratering multivari investigation. 

 
 

The data are given in fascia cratering multivari. The distribution of the number of 
craters matches the baseline closely. To look at the fascia-to-fascia (part-to-part) family, we 
create a new input group, with a different value for each combination of machine and time. 
We give multivari charts for the time-to-time, machine-to-machine, and fascia-to-fascia 
families in Figure 11.14. 

There is no evidence that the dominant cause acts in the machine-to-machine or 
time-to-time families. There is large fascia-to-fascia variation in some of the groups and 
little in others. 

An observant team member noticed that there were only two values plotted for each 
group of five fascias. When the team examined the data more closely, they saw that there 
was only one fascia in each group with a value different from 0. This was a very strong clue 
about the dominant cause because the team could only think of one process step where 
something happened only once in every five parts. The operator sprayed mold release every 
10 pieces. After five pieces he applied a minor spray. Mold release was used to prevent tear- 
ing when the fascia was removed from the mold. 

In a follow-up investigation, the team sampled 10 consecutive fascias in the molding 
sequence at three different times in the morning shift. The data are given in the file fascia 
cratering multivari2. The team confirmed mold release as the dominant cause of cratering 
as shown in the Figure 11.15. With knowledge of the dominant cause, the team needed to 
choose a working approach. We continue the story in Chapter 14. 
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Figure 11.15 Multivari chart from second fascia cratering multivari investigation. 

 
 
 

Note that in this example the fascia-to-fascia family of causes results in systematic varia- 
tion and not haphazard variation as in most applications where we have a part-to-part family. 

 
 

Multivari Investigation Summary 
 

Select families to investigate by grouping the remaining suspect dominant causes. 
 

Question 

For the current process, which of the selected families is home to a dominant cause? 
 

Plan 
 

• Specify a study population long enough to capture the full extent of variation. 

• Select a sample using a systematic sampling protocol designed to capture the variation due 
to the chosen families. 

• Spread the sample out over the study population. 
 

Data 

Record the output value and the corresponding families, one output per row. 
 

Analysis 
 

• Plot a histogram of the data. Check that the range of output values covers most of the full 
extent of variation. 

• For families likely to have systematic effect, construct the single-family multivari charts, plotting 
individual output values. 
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• For the part-to-part family (or other families expected to have haphazard effect), create a new 
input group so that the effect of the family is seen in the variation within each value of group. 
Construct the multivari chart with group. 

• For each family identified as having a large effect, construct two family multivari charts to 
look for evidence of interaction. 

 
Conclusion 

 
• Identify the dominant family (or families if the dominant cause acts in two or more families). 

 
 
 

Comments 

A multivari investigation is a powerful tool for assessing the contribution of families defined 
based on time or location. 

In planning a multivari investigation, keep the number of families to five or fewer so that 
the sampling plan and analysis are not too complex. The camshaft journal diameter multivari 
illustrates the difficulties. 

In a multivari investigation, we do not use random sampling; instead we select parts 
deliberately to estimate the effects of the specified families. We may need to sample addi- 
tional parts beyond those collected for the normal control or monitoring of the process. 

For any family in a multivari investigation, we need traceability. In the cylinder head 
example, we were interested in the mold-to-mold family, that is, variation in consecutive 
pieces from the same pattern. To assess this family, we must be able to identify the heads pro- 
duced consecutively from each pattern when we measure the output. If we cannot trace parts 
through the process easily, then for time-based families, we need first-in, first-out discipline at 
each process operation so that the time sequence is not lost when we select parts at the end of 
the process. 

Multivari investigations are not effective for binary output characteristics unless the 
rate of defectives is high. In the block leaker project, introduced in Chapter 1, the baseline 
rate of leaking blocks was 2.2%. The team initially conducted a multivari investigation in 
which five consecutively poured blocks were tracked through the finishing process every 
two hours for several days. After 160 blocks, they found only one leaker. There was no useful 
information in the multivari investigation for this rare defect. 

Sometimes the recommended analysis process fails because we do not find a dominant 
family when we look at one family at a time. In this case, we recommend constructing all 
two-family multivari charts and looking for interactions. 

If the multivari charts fail to reveal the dominant family, we suggest a formal analysis of 
variance (ANOVA) to quantify the relative contributions of each family.6 We may then decide 
to search for causes within one or more of the families with the largest contributions, or we 
may abandon the partition of causes in these families and start over with a new set of families. 
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11.2 COMPARING FAMILIES DEFINED BY PROCESSING 
STEPS 

 
Most manufacturing processes consist of several steps. We can form families of causes 
based on inputs that change within each of these steps. In Chapter 10 we looked at some 
examples where the process was split into two families, causes acting upstream and down- 
stream of a particular point in the process. Here we consider applying this idea repeatedly. 

We consider two types of plans: 

• Measure the output characteristic on the same parts after each processing step. 
• Allow some parts to skip processing steps and measure the final output 

characteristic. 

The first type of plan can be applied more commonly than the second. Consider the following 
examples. 

 

 
 

V6 Piston Diameter 

In Chapter 5, we described a problem to reduce variation in the diameters of machined alu- 
minum pistons. In the baseline investigation, the final diameter after Operation 310 varied 
between 581 and 601 microns, measured from a fixed value. In searching for a dominant 
cause, the project team decided to define families based on a number of processing steps as 
shown in Figure 11.16. The processing steps in Figure 11.16 include all those that affect 
diameter. 

To eliminate as many processing steps as possible, the team tracked 96 pistons through 
the process, measuring the diameter after Operation 200 and after each of the steps shown 
in the process map. In total they measured each piston diameter six times. The team carried 
out the investigation over three days, 32 pistons at a time. During this period, the process 
operators collected the marked pistons for measurement after each operation. 

From the baseline investigation, the team expected that they would see close to the full 
extent of variation over the three days. They decided to use only 32 pistons each day to 
limit the disruption to the normal operations. The team used the in-process gages for the 
measurements after Operation 200 to Operation 260 and the Operation 310 gage for the final 
three measurements. 

 

 
 
 

Operation 210 
 
 

 
Figure 11.16 Piston machining process map. 
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Figure 11.17 Scatter plots of outgoing versus ingoing diameter (by operation; dashed 

horizontal lines give the full extent of variation). 
 
 

The team converted all measurements, given in the file V6 piston diameter variation 
transmission, to the same units as at the final gage. The team produced the scatter plots of 
the incoming and outgoing diameter for each operation, as shown in Figure 11.17. They 
added horizontal lines to show the full extent of variation to the plot that shows the final 
diameter. 

We interpret the scatter plots in Figure 11.17 starting from the end of the process. From 
the top left diagram, we see the full extent of variation in the final output. We also see that 
most of the variation in the final diameter is transmitted through Operation 310. If we could 
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eliminate the variation in the diameter after Operation 290 so that the output is, say, 595, 
then from the graph we see there would be very little variation in the diameter after Operation 
310. That is, little diameter variation is added in Operation 310; most of the variation is trans- 
mitted from upstream. We can eliminate Operation 310 as the home of a dominant cause. From 
the top right plot, we see similarly that most of the variation in the diameter after Operation 
290 is due to variation at Operation 270 and, hence, we can also eliminate Operation 290. 

The left plot in the second row of Figure 11.17 has a different pattern. At Operation 270 
there is substantial variation added to the process. If the diameters after Operation 260 were 
fixed at, say, 620, there would still be substantial variation after Operation 270. Hence we 
eliminate all operations upstream of Operation 270 and conclude the dominant cause of the 
variation in the final diameter is in the Operation 270 family. Next, the team focused their 
efforts on Operation 270 to isolate the dominant cause of variation. 

In this example, it was possible to measure the diameter of each piston at various 
points throughout the process. The pistons were traceable through the process by imple- 
menting special measures during the investigation. Also, in this example, the team measured 
the diameter after each operation in a single investigation. They could have adopted 
another strategy and, for example, measured the diameter after Operation 270 and after 
Operation 310 only. Then, they would repeat the investigation, splitting the remaining 
family. This way they would compare only two families at a time, as in Chapter 10. In the 
example described here, it was easier to track pistons through in a single investigation 
process. 

We can use regression analysis to quantify the amount of variation added and transmitted 
at each stage if the pictures do not tell a clear story.7 

 
 

Roof Paint Defect 

In a painting process, there was a defect, called a line, on the roof of a finished car. The 
defect rate was about 10% and the repair costs were high. In an earlier application of the 
algorithm the team discovered that by reducing the film build (thickness) of the clear coat, 
the last step in the multistep painting process, the defect rate was reduced to less than 1%. 
However, this process change resulted in an inferior overall appearance of the painted sur- 
face. The team decided to reapply the algorithm to find a solution to the line defect prob- 
lem that would allow a higher film build. 

The team used the baseline defect rate of 10%. The goal was to achieve a defect rate of 
less than 1% with the original specifications for the clear coat film build. 

The team decided to look for a dominant cause of the defect. They could not restore the 
clear coat film build specification in the production process because of the high cost of 
rework. As a consequence, the team decided to use test panels instead of car roofs as the 
study units because they could apply a high film build to the panels as in the original process. 
They mounted the panels on the roof of a dummy vehicle where the line defect normally 
occurred. To check this procedure, the team ran a set of panels through the process with the 
clear coat film build above its original level. Under these conditions, the defect occurred on 
almost every panel. The team was confident that knowledge acquired using the panels could 
later be applied to vehicles. In our language, they felt that there would be little study error. 

The painting process has five major steps as seen in Figure 11.18. 
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Figure 11.18   Painting process map. 

 
 

The team decided to search for a dominant cause by first isolating where in the process the 
defect occurred. They divided the causes into five families corresponding to the major pro- 
cessing steps. 

In the first investigation, the team masked three panels until after the e-coat step. Three 
other panels were processed normally. The defect occurred on all six panels. The team 
eliminated the incoming metal, the phosphate step, and the e-coat step from consideration. 
In a second investigation, they processed another six panels normally up to the end of the 
e-coat step. Three of the panels were processed through the primer stage but not the color 
coat. The other three were not primed but color coated as normal. Clear coat was applied to 
all the panels. Again the defect was present in all six panels. The team concluded that the 
primer and color coat steps could be eliminated and hence the clear coat process was the 
home of the dominant cause. This was not surprising given the first solution to the problem. 

The two major substeps within the clear coat process were paint application and oven 
cure. To split these two steps, three panels were removed from the test car after painting and 
were cured in a laboratory oven. None showed the defect. The remaining three panels were 
processed normally and as expected, all showed the defect. The dominant cause lived in the 
clear coat cure oven. The team continued to split the process using similar trials. Eventually, 
they isolated the airflow from exhaust ducts within a particular zone of the oven as the dom- 

inant cause of the line defect. 
The team then carefully tested a minor modification to the ducts that would change the 

airflow pattern over the roof of painted vehicles. Twenty vehicles were painted in the modi- 
fied process with high clear coat film build. There were no line defects and no other notice- 
able negative side effects. The change was made permanent. The clear coat film build was 
increased with a marked improvement in appearance. There were no occurrences of the line 
defect in the new process. 

In this problem, the team repeatedly split the process and homed in on the dominant 
cause. Because of the nature of the process and the defect, they could skip or alter steps of 
the process and still produce painted panels with or without the defect. This would not be 
possible in many processes. 

 
 

Variation Transmission Investigation Summary 
 

Question 

For the current process, which process step is the home of a dominant cause? 
 
 

Plan 
 

• Specify a time frame over which we expect to see the full extent of variation in the output. 

• After the first process step, select a sample of 30 or more parts spread over the time frame. 
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• Measure the characteristic corresponding to the output on each part in the sample after each 
process step. 

 
Data 

Record the measured output values, one row for each part. 
 

Analysis 
 

• For each process step (after the first), plot the output after the step versus the output before 
that step. 

• For the plot showing the output from the final process step, add horizontal lines showing the 
full extent of variation. 

 
Conclusion 

 
• If the full extent of variation is not observed, the process step containing the dominant cause 

cannot be identified. 

• Starting at the last process step, eliminate any step where most of the variation is transmitted. 
The first process step where the variation is not transmitted is the home of the dominant cause. 

 
 
 

11.3 COMPARING COMPONENT FAMILIES 

In Chapter 10, we looked at problems defined in terms of the function of an assembled 
product. We separated the contribution of the assembly and the component families by 
repeatedly disassembling and reassembling two assemblies. If the dominant cause lies 
with the components, we can conduct further investigations to pinpoint the particular 
component family that is home to the dominant cause. In this section we look at such 
investigations. 

We call the individual pieces that make up the assembly components, a specified set of 
components a group, and all components known not to contain the dominant cause the 
housing. To start, there may be no housing if all components are suspect. The number of 
components in the housing grows as we eliminate components. 

To compare component families, we find two assemblies with opposite and extreme per- 
formance in terms of the output of interest; that is, we use leverage as discussed in Section 9.3. 
With this plan the output of the two assemblies covers the full extent of variation. Then, we 
repeatedly swap groups of components between the two assemblies and remeasure the output. 

We demonstrate the conduct, analysis, and interpretation of a component swap investi- 
gation with two examples. 

 
 

Headrest Failure 

Management initiated a project to reduce the frequency of customer complaints about seat 
headrests that would not stay in a set position. In focusing the problem, the team demon- 
strated that the problem could be solved by eliminating headrests that required a force of 
less than 35 Newtons (N) to move through their full range of motion. 
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The team carried out a baseline investigation. To meet their goal, they wanted to reduce 
variation in force rather than increase the average force to avoid headrests that would be 
very hard to move; that is, they wanted to change only those headrests with low output. 
They assessed the force measurement system and found that there was little contribution 
from this system to the baseline variation. They decided to search for a dominant cause of 
force variation. 

The team selected two seat assemblies, one with high force (70.3 N) labeled H, and one 
with low force (25.8 N) labeled L, relative to the baseline. The seat assembly consists of a 
headrest and a seat. To assess the assembly process (as in Chapter 10), the team removed 
and reinstalled each headrest three times in its original seat. The force was measured after 
each reinstallation. The data are: 

 
 

Original 
force 

After first 
reassembly 

After second 
reassembly 

After third 
reassembly 

H (70.3) 72.5 74.2 71.9 

L (25.8) 25.9 24.3 25.4 
 
 

Because there were only small changes after reinstallation, the team ruled out the 
assembly process and concentrated on the components. Next, they swapped the two headrests 
between the seat assemblies and measured the force. For this and subsequent component 
swaps we display the data in a table where: 

• Diagonal cells contain the force measurements from the assembly-reassembly 
phase. 

• Off-diagonal cells contain the force measurements after the components are 
swapped. 

For the example the data are: 
 

 
 

 Headrest 
Seat H L 

H 70.3, 72.5, 74.2, 71.9 74.6 
L 26.7 25.8, 25.9, 24.3, 25.4 

 
 

Changing the headrest does not change the force. We say the performance follows the 
seat, since the seat from the original high (low) force assembly results in high (low) force 
even with a different headrest. The team eliminated the headrest family and looked at the 
seat in more detail. 

The seat was assembled from three components: guides, springs, and the actual seat. 
The team disassembled and reassembled the two seats into the three components three 
times and measured the force. The data are shown in the diagonal cells of the following 
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table. The team eliminated the assembly process for the three components as the home of the 
dominant cause. During the seat disassembly-reassembly investigation, the team noticed 
differences in the shape of the springs in the two assemblies. They next swapped the 
springs in the two seat assemblies and measured the force. The data are given in the table. 

 
 
 
 

Other components 

Spring 

H L 

H 71.4, 72.5, 72.3 25.5 

L 75.2 25.9, 25.5, 24.3 

The dominant cause acts in the spring family of causes. The diagnostic tree in Figure 11.19 
summarizes the search for a dominant cause. 
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Figure 11.19 Diagnostic tree for headrest failure example. 
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The team worked with the supplier to understand the differences in the springs. They 
discovered that the supplier had reworked the springs in the low-force seats. Together, the 
supplier and customer developed a change of the rework process so that the force associated 
with the reworked springs exceeded 35 N. Customer complaints about the headrest moving 
were virtually eliminated. 

 
 

Power Window Buzz Noise 
 

There were frequent complaints about a noise fault called buzz in power window regulators 
(the motor and linkage that opens and closes the window). The customer, an assembly 
plant, demanded that the supplier implement 100% inspection to prevent noisy regulators 
from reaching the assembly plant. Management assigned a team the goal of reducing or 
eliminating the defect so that the costly inspection could be removed. 

Trained listeners measured buzz subjectively on a scale of 1 to 7. They convinced their 
customer that if the buzz score was less than 4 on all regulators, then they could eliminate 
the 100% inspection. 

The team did not carry out formal baseline or measurement system investigations. They 
had informal baseline information from past experience since they knew the buzz noise 
level varied between 1 and 7. They could ensure the dominant cause was acting in any 
investigation by selecting regulators with noise levels at the extremes. The decision not to 
check the measurement system was more risky. Large differences in measured noise for 
equally noisy regulators would make finding a dominant cause difficult. To address this 
concern, the team used a single listener to assign the noise levels for all regulators in the 
subsequent investigations. 

They decided to search for the cause of the buzz. They divided the causes into two 
families, assembly and components. They selected a noisy regulator (score 7) and a quiet 
regulator (score 1). They could take the regulator apart without damaging or changing 
any of the major components. There was no change in buzz score when they disassembled 
and reassembled the two regulators three times each using the normal assembly 
sequence. The team eliminated the assembly process and concentrated on the components 
family. 

The regulator has six components: arm one, arm two, spring, motor, back-plate, and 
sector. The team felt the motor was the likely home of the dominant cause of noise. 
They swapped the motors in the two regulators and measured the noise. The motor with 
the components from the originally quiet regulator had a score 7 and the motor with the 
other noisy components had a score 1. Indeed, the dominant cause of buzz lived in the 
motor. 

The motor was a purchased part and comprised 18 components that could be disas- 
sembled without damage. The team formed two groups of nine components each, 
labeled G1 and G2, based on their limited knowledge of how the motor worked and the 
ease of disassembly. They did not know the details of the assembly process used by the 
motor supplier, so they ignored the motor assembly family for the moment. They next 
swapped all of the G1 components simultaneously and remeasured the buzz. The 
results were: 
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 G1 
G2 Noisy Quiet 
Noisy 7 7 
Quiet 2 1 

 
The entries 7 and 1 on the diagonal are the initial buzz measurements from the two original 
regulators. The off-diagonal entries are the buzz measurements for the regulators with all 
components in G1 swapped. Note that to measure buzz, the motors were assembled 
together with the other five components from the original quiet regulator. Since all compo- 
nents other than the motor had been eliminated as possible homes of the dominant cause, 
the choice of housing for the motor was not important. 

The buzz followed G2 so all components in G1 were eliminated from consideration. 
Now G2 was split into two groups, G21 and G22, and the team found that the dominant 
cause lived in G22, a group of four components, three gears in the drive train, and the 
armature shaft. 

When the first and second gears were swapped together, the buzz only occurred for the 
combination of all the G22 components from the originally noisy motor. The data were: 

 
 

 First and 
second gears 

Gear 3 and 
armature 

 
 
Noisy 

 
 
Quiet 

Noisy 7 3 
Quiet 2 1 

 
Now the picture is less clear. This pattern suggests a dominant cause involving one (or both) of 
the first and second gears, and one (or both) of the third gear and the armature. In other words, 
the dominant cause involves one or more components in each of the two remaining families. 

The team returned the components to their original motor. They next simultaneously 
swapped the second and third gears with the results: 

 
 

 Second and 
third gears 

First gear and 
armature 

 
 
Noisy 

 
 
Quiet 

Noisy 7 1 
Quiet 7 1 

 
The buzz followed the second and third gears together. The dominant cause of buzz is an 
interaction between these two gears. Swapping only one of these two gears does not pro- 
duce a complete switch in the buzz. We show the diagnostic tree for the search to this point 
in Figure 11.20. 
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Figure 11.20 Diagnostic tree for power window buzz noise. 
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 G1 
G2 Noisy Quiet 
Noisy 7, 6, 7, 6 1 
Quiet 7 1, 2, 2, 1 

 

 G1 
G2 Noisy Quiet 

Noisy 7, 6, 7, 6 7 
Quiet 2 1, 2, 2, 1 

 

 

 

The team focused their search for the dominant cause on the second and third gears. 
They approached the motor supplier with their findings. The supplier provided a new qui- 
eter type of motor to solve the problem. Given that this solution does not require an under- 
standing of the cause of motor noise, the team would have been better off talking with the 
supplier much earlier. 

 

 
 

Interpreting the Results 

In any component swap investigation where we divide an assembly into two groups of 
components denoted by G1 and G2, there are a number of possible results when we swap 
G1 and G2. Consider the following hypothetical example based on the window buzz 
problem. We always start with the original measurements and the results from the repeated 
disassembly and reassembly, if they are available. Suppose we have: 

 
 

 G1 

G2 Noisy Quiet 
Noisy 7, 6, 7, 6  
Quiet  1, 2, 2, 1 

 
 

The first numbers in the diagonal cells correspond to the original values of the extreme 
assemblies that we selected for the investigation. When we repeatedly disassemble and 
reassemble, we see the variation due to the assembly process. In this case, we eliminate the 
assembly process as the home of the dominant cause. 

We obtain the off-diagonal elements by swapping the components in G1 between the 
two assemblies. If the performance follows one of the two groups of components, the inter- 
pretation of the results is straightforward. For example, we might have the data: 

 
 
 
 
 

or 
 

 
 
 

In the left table, G1 is the home of the dominant cause; in the right table, the dominant 
cause acts in G2. In other cases the performance does not follow either group. For instance, 
consider the following four possible results: 
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 G1 

G2 Noisy Quiet 
Noisy 7, 6, 7, 6 4 
Quiet 4 1, 2, 2, 1 

 
 G1  
G2 Noisy Quiet 
Noisy 7, 6, 7, 6 4 
Quiet 1 1, 2, 2, 1 

 

 
 

 G1 

G2 Noisy Quiet 
Noisy 7, 6, 7, 6 1 
Quiet 1 1, 2, 2, 1 

 
 G1  
G2 Noisy Quiet 
Noisy 7, 6, 7, 6 7 
Quiet 4 1, 2, 2, 1 

 

In all of these cases the dominant cause involves (at least) one component from both G1 and 
G2. We need to re-form the groups to determine where the dominant cause lies. We discuss 
the situation where a dominant cause involves two or more components in more detail later 
in this section. We also explore the general issue of dealing with a dominant cause involving 
two (or more) inputs in Chapter 14. 

 
Summary 

Suppose we have: 

• Two assemblies with opposite and extreme output relative to the full extent of 
variation 

• Assemblies that can be disassembled and reassembled without damage 

• Elimination of the assembly family as the possible home of a dominant cause 
(see Chapter 10) 

We search for the component that is the home of the dominant cause with a series of 
small experiments where we divide the components into two groups and swap one group. 
We analyze the data by looking at two-way tables. We assume that a dominant cause lives 
with one or at most a pair of components. If we swap this component or pair, the output will 
move across most of its full extent of variation. 

The component swap procedure has two parts. In the first we assume the dominant 
cause is in a single component family. 

 
 

 
Component Swap Procedure 

 
1. Divide the (remaining) components into two groups. 

2. Swap one of the two groups of components, as shown in Figure 11.21, and measure the 
output for the two new assemblies. 

3. Interpret the results. If the performance: 

• Follows one of the two groups, eliminate the other group. Stop when a single component 
remains; otherwise go back to step 1. 

• Does not follow one of the two groups, the dominant cause lives with a pair of compo- 
nents, one from each of the two groups. Go to the component swap add-on procedure. 
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Two original assemblies with housing 
 

Housing low Housing high 
 

G1 low G1 high 
 

G2 low G2 high 
 
 

Swapping group G1 components to create two new assemblies 
 

Housing low Housing high 
 

G1 high 

G2 high 

G1 low 
 
 

G2 high 

 

Figure 11.21 Illustration of swapping the group of components labeled G1. 
 

 
 
 

The procedure is more complicated if the dominant cause involves two components. 
 
 

 
Component Swap Procedure Add-on 

 
A1.  Divide the remaining components into two groups in a new way. 

A2.  Swap one of the two groups of components, as shown in Figure 11.21, and measure the 
output for the two new assemblies. 

A3. Interpret the results. If the performance: 

• Follows one of the two groups, eliminate the other group. Stop when a single pair of 
components remains; otherwise divide the remaining components into two groups and 
go back to step A2. 

• Does not follow one of the two groups, go back to step A1. 

 
This procedure will fail if there is no dominant cause or if the dominant cause involves 
three or more components. 

 
 

Comments 

A key requirement for component swap plans is that the product can be disassembled and 
reassembled without damaging the parts. To avoid study error, the reassembly process 
should match the assembly process in normal production as closely as possible. Once we 
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have ruled out the assembly process, we carry out the component swap investigation offline 
to avoid interference with regular production. 

By exploiting leverage, we use only two assemblies chosen to reflect the full extent 
of variation. There is a risk we may select assemblies that are extreme due to a different 
failure mode, and hence with a different dominant cause, than that of the problem we are 
trying to address. To alleviate this risk we recommend confirming the conclusion with an 
experiment that uses several extreme assemblies. For instance, to confirm the conclusion 
in the headrest failure example, we can put good springs in five seat assemblies that orig- 
inally required less than 35 Newtons force to move through their full range of motion. 
If the new springs increase the force above 35 Newtons, we confirm the spring as the 
dominant cause. 

Since all components that make up the housing have been eliminated as a possible home 
of the dominant cause, we can use a single housing for further disassembly-reassembly and 
component swap investigations. We employed this idea in the power window buzz noise 
example. Note that at the start of an investigation there is often no housing because all 
components are suspect. 

In the recommended component swap procedure, we assume the assembly family has 
been eliminated using an investigation where we disassembled and reassembled down to the 
individual components. One advantage of this plan is that we can use the production assembly 
process. Alternatively, suppose we divide the assemblies into a number of subassemblies 
(groups of components). In that case, we start by disassembling and reassembling down to 
the subassembly level. Then, if this assembly process is eliminated, we apply the component 
swap procedure to the subassemblies. A complication arises if the proposed component swap 
procedure indicates the dominant cause is an interaction between two groups of sub- 
assemblies. This interaction could be due to either components or the assembly process for 
the subassemblies. 

To illustrate, consider the window buzz noise example. The team found the dominant 
cause acted in the motor, which had 18 individual components that could be grouped into 
two subassemblies. Suppose the team started by disassembling and reassembling each 
extreme motor into the two subassemblies and that this part of the assembly family was 
eliminated. Next, the team would swap one of subassemblies between the two motors. 
Suppose the dominant cause was found to act within one of the subassemblies. Then the 
next step would be to check the assembly family for that subassembly before proceeding to 
swap components from the identified subassembly. 

There are many other component swapping plans.8 For example, we can use more than 
two groups of component groups at each stage.9 We strongly recommend dividing the 
remaining components into only two groups at each stage to keep the procedure simple and 
to maximize the number of components eliminated with each swap. 
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Key 
Points 

 

• We use a multivari investigation to compare time and location families. We 
design a systematic sampling protocol to isolate the contribution of each family 
to the baseline variation. 

• We use a variation transmission investigation to eliminate process step families. 
We trace parts through the process and measure the output characteristic after 
each process step. 

• We use component swap to eliminate families related to an assembly process 
and the corresponding components. We repeatedly disassemble, reassemble, and 
swap components in an organized way. 

 
 
 
 

Endnotes (see the Chapter 11 Supplement on the CD/ROM) 

1. If we cannot isolate a dominant family or families from the multivari charts, we can use 
analysis of variance (ANOVA) to quantify the contribution of each family to the overall 
variation. 

2. In multivari investigations, we expect families such as part-to-part to show haphazard rather 
than systematic variation. We need to plot the data carefully to detect the effect of such 
families. We provide more detail on assessing this type of variation in the supplement. 

3. See note 2. 
4. See note 2. 
5. See note 1. 
6. See note 1. 
7. We can use regression analysis to separate the variation transmitted and added at each operation 

if we can measure the output characteristic before and after the operation. We elaborate in the 
supplement. 

8. We can conduct investigations to compare component families in different ways. We discuss a 
specialized tool first introduced by Dorian Shainin and some other related methods in the 
supplement. 

9. We propose component swap investigations that involve dividing all remaining components into 
only two groups. In the supplement, we consider plans that divide components into three groups. 

 
 
 
 

Exercises are included on the accompanying CD-ROM 



 

 



 

I 

 
 

12 
Investigations Based 

on Single Causes 
 
 
 

I walk slowly, but I never walk backward. 

—Abraham Lincoln, 1809–1865 
 
 
 

n this chapter, we look at investigations to search for a dominant cause based on single 
causes, that is, individual varying inputs. These plans are not particularly useful early 
in the search because they do not result in the elimination of families with a large num- 

ber of causes. However, we can use these investigations for available data or when the fam- 
ily of remaining suspects is small. With these plans, we measure the output and selected 
suspects for a number of parts. 

Large variation in a measurement system for an input can mask a dominant cause. Ideally, 
we would assess the measurement systems used to determine these inputs—see Chapter 7 for 
details. This is often not done, either because of prior experience with the measurement system 
or due to lack of resources. 

In this chapter, we distinguish between plans for continuous and binary outputs because 
they lead to different analysis tools. 

 
 
12.1 GROUP COMPARISON: COMPARING PARTS 

WITH BINARY OUTPUT 

We use a group comparison to examine the effects of individual causes when the output is 
binary. To start, we select a number of parts with each of the two output values. Then we 
measure as many inputs as possible as suspects. Recall that a suspect is a cause that has not 
been ruled out in the search for a dominant cause. The values for a dominant cause will be 
substantially different for the two groups of parts. We look at two examples. 
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Engine Block Leaks 

In the engine block leak example discussed in Chapter 1, the project was divided into three 
separate problems to address different failure modes. The blocks that leaked from the left 
rear intake wall had a visible defect. Close inspection with a microscope revealed that the 
defect was a sand inclusion. The team also observed that wall thickness varied from block 
to block. 

The team planned a new investigation. Whenever they found an intake wall leaker, they 
set aside a nonleaking block cast in the same hour. They collected 100 blocks for each group. 
Then, for each of the sampled blocks, they measured thickness in inches at six locations in 
the left rear intake wall. The data are given in the file engine block leaks comparison. 

To analyze the data, we construct box plots of wall thickness at each location for leakers 
and nonleakers. We show the results for two locations in Figure 12.1. 

The right panel of Figure 12.1 shows a difference in average wall thickness between 
leakers and nonleakers at location four. There was little difference for the other locations as 
illustrated in the left panel of Figure 12.1. The team concluded that wall thickness at loca- 
tion 4 was a dominant cause of rear intake wall leaks. 

 

 
 
 

0.25 0.20 
 
 
 

0.20 
 

0.15 
 
 
 

0.15 
 
 

0.10 
 

Leaker 
 

Nonleaker 
 

Leaker 
 

Nonleaker 

Type of block Type of block 
 

Figure 12.1 Box plots of wall thickness by block type at locations 3 and 4. 
 
 

Window Leaks 

Based on the results of customer surveys, the management of a truck assembly plant iden- 
tified rear window water leaks as a substantial customer concern and assigned a team to 
address the problem. In the plant, 10 trucks per day were leak-tested in a special chamber 
that simulated extreme conditions. Using one month’s data to establish a baseline, the team 
found that the rear window leak rate was 8% in the aggravated test. The team assumed that 
if they reduced this rate there would be substantial reduction in customer complaints. Using 
Pareto analysis by location, the team identified the upper ditch as the source of about 50% 
of the leaks. They set the problem goal to eliminate upper ditch rear window leaks. 

The team showed that the measurement system was acceptable for classifying trucks as 
either leaking or not and for determining the location of the leak. However, the system 
could not consistently measure the severity of the leak. For this reason, the team used the 
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measurement system only to classify a truck as a leaker or a nonleaker of the upper ditch 
rear window. 

The team decided on a group comparison with eight leakers and eight nonleakers. They 
selected eight trucks that had failed the leak test with an upper ditch leak. Obtaining trucks that 
did not leak was more difficult since there was great pressure to immediately ship any good 
truck. The team found eight nonleakers from trucks that had been set aside for other problems. 

They measured nine input characteristics thought to be related to water leaks. The data 
are given in the file window leaks comparison. The team plotted the data by group for each 
of the nine suspects. We show the result for primary seal fit in the left panel of Figure 12.2. 
There was no clear separation between leakers and nonleakers for any input. They also cre- 
ated scatter plots for all pairs of suspects with a different plotting symbol for leakers and 
nonleakers.1 The plot for primary seal gap and quality of plastisol application, in the right 
panel of Figure 12.2, shows that all leaking trucks had both a large primary seal gap and 
poor plastisol application, while that combination never occurred for nonleaking trucks. 

The team concluded that the dominant cause of upper ditch leaks was the combination 
of a large primary seal gap and poor plastisol application. In addition, they eliminated the 
other seven inputs from consideration. This conclusion was based on a small number of 
trucks and required verification. 
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Figure 12.2 Plot of primary seal fit by group (left) and by plastisol amount (right). 

 
 

 
Group Comparison Summary 

 
Select as many suspects as possible that can be determined after measuring the output. 

  
Question 

In the current process, which, if any, of the suspects is a dominant cause? 
  

Plan 
 

• Select a group of at least six parts for each of the two output values. 

• Measure all suspects for each part. 
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Data 

Record the output (group) and input values, one row for each part. 
 

Analysis 
 

• Plot the values of each suspect stratified by group. 

• If no clear dominant cause is evident, create scatter plots of all possible pairs of inputs using 
different plotting symbols for each group. 

 
Conclusion 

 
• If there is clear separation of the suspect values between the groups, the suspect is the 

dominant cause. 

• If there is a separating line on a scatter plot that divides the groups, a combination of the two 
suspects is the dominant cause. 

 
 

Comments 
 

Group comparison is especially useful if the problem is defined in terms of a rare defect. 
Low-frequency problems are difficult to solve because it is hard to get information about 
the dominant cause of the defect. We can collect the two groups of parts over time until we 
have sufficient numbers to make the comparison. 

We sometimes try a group comparison early in the search for a dominant cause where 
we measure many continuous characteristics on each part in the two groups. If we can find 
one characteristic that separates the defectives and the good parts, we can reformulate the 
problem in terms of the continuous characteristic. The reformulated problem may be much 
easier to solve because we can now see variation in the output on each part. 

We can use group comparison if the output is binary or if the output is continuous and 
we select parts from the extremes to get the full extent of variation. In this instance, we create 
two groups and ignore the measured values of the output. We need to be careful if we use 
leverage in this way. One danger is that the extreme parts used in the investigation may be 
due to different failure modes and thus have different causes. This highlights the impor- 
tance of focusing the problem so that there is only a single dominant cause. Suppose, in the 
engine block leaks example, the team had not focused the problems based on the location 
of the leak. If they had then carried out the group comparison described previously, they 
would not have seen large differences in wall thickness between the two groups, because 
the leakers group would likely contain blocks that leak at other locations. 

In a group comparison, the groups are formed using the output. As a result, we can only 
compare inputs that can be measured or determined after the part is produced. For instance, 
in the window leaks example, it was not possible to compare process inputs such as win- 
dow installer or machine settings because these cannot be determined after a truck is leak 
tested. 

We require at least six to eight parts per group to avoid falsely identifying a dominant 
cause. We examine some alternate plans and analyses in the supplement to this chapter.2 
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12.2 INVESTIGATING THE RELATIONSHIP BETWEEN 
INPUTS AND A CONTINUOUS OUTPUT 

 
For an input/output relationship investigation, we measure the output and several inputs on 
each part. We present three examples. 

 
Crossbar Dimension 

There was excess variation in a key crossbar dimension of an injection-molded part. In the 
baseline investigation, the team estimated the standard deviation and the full extent of vari- 
ation of the dimension to be 0.46 and –0.3 to 2.0 thousandths of an inch. The problem goal 
was to reduce the standard deviation to less than 0.25. 

The team showed that the measurement system was highly capable. They decided to 
search for a dominant cause. They conducted a multivari investigation where five consec- 
utive parts from the single mold were sampled every 30 minutes for four hours. See the 
exercises for Chapter 10. The team found that the time-to-time family contained the dom- 
inant cause. 

Next they planned an input/output relationship investigation. Forty shots of the process 
were selected haphazardly over a two-day period. For each shot, the team measured the 
crossbar dimension of the part and recorded five inputs: die temperature, nozzle tempera- 
ture, barrel temperature, hydraulic pressure, and cavity pressure. All these suspects were 
thought to exhibit time-to-time variation. 

The data are given in the file crossbar dimension input-output. The first step in the 
analysis is to check that the output varied over the full extent of variation as in the baseline. 
We see from the summary that this is the case. 

 
Variable N Mean Median TrMean StDev SE  Mean 
dimension 40 0.8340 0.7618 0.8353 0.5467 0.0864 

 

Variable Minimum Maximum Q1 Q3 
dimension –0.1611 1.9154 0.4282 1.3649 

 

The second step is to fit a regression model3 (Montgomery et al., 2001) that includes 
all of the inputs simultaneously. See Appendix E for the MINITAB directions. The resid- 
ual standard deviation is 0.2515, which is substantially less than the baseline standard 
deviation. The residual standard deviation is an estimate of the variation in crossbar dimen- 
sion if we could hold all of the inputs in the regression model fixed. The small value of 
residual standard deviation indicates that one or more of the inputs is a dominant cause of 
the variation. 

In the third step, we look at the scatter plots of crossbar dimension versus each of the 
inputs.4 Two of the plots are shown in Figure 12.3. 

There is a strong relationship between barrel temperature and crossbar dimension. If we 
could hold barrel temperature fixed at 77°, for example, we see from the plot that crossbar 
dimension would vary only by about 0.5. There is strong evidence that barrel temperature 
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Figure 12.3   Plot of crossbar dimension versus barrel temperature and hydraulic pressure. 

 
 

is a dominant cause of crossbar dimension variation. In Chapter 13, we describe an exper- 
iment to verify this conclusion. There is no strong association of crossbar dimension with 
the other inputs (as illustrated for hydraulic pressure in the right panel of Figure 12.3) and 
we eliminate them from further consideration. 

If the relationship between the input and output is roughly linear, as is the case here, we 
can quantify the contribution of the input to the output variation using a regression model. 
The residual standard deviation represents the remaining (unexplained) variation in the 
output if we could hold the input fixed. We compare the residual standard deviation to the 
baseline to assess the contribution of the input. 

Using MINITAB, we fit a regression model for crossbar dimension as a function of 
barrel temperature. The results of the analysis are: 

 
 

The regression equation is 
dimension  =  –23.9  +  0.323  barrel  temp 

 

Predictor Coef SE Coef T P 
Constant –23.898 2.075 –11.52 0.000 
barrel temp 0.32293 0.02709 11.92 0.000 

 

S  =  0.2544 R-Sq = 78.9% R-Sq(adj)  =  78.3% 
 

Analysis of Variance 
 

Source DF SS MS F P 
Regression 1 9.1979 9.1979 142.13 0.000 
Residual Error 38 2.4591 0.0647   
Total 39 11.6570    

 

The residual standard deviation is 0.25, much smaller than the baseline value 0.46. If 
the team could eliminate the effect of barrel temperature they would meet their goal. 
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Truck Pull 
 

Consider again the truck pull problem introduced in Chapter 1. The team decided to focus 
on right caster since caster variation had a much larger effect on pull than camber variation. 
The baseline standard deviation for right caster was 0.24˚. Previous investigations ruled out 
the measurement system. The assembly process was difficult to investigate so the team set 
that family aside for the moment and concentrated on the component families. A feed- 
forward controller compensated for variation in the frame geometry. This left the other 
components of the alignment system, namely the knuckle and upper and lower control arms, 
as possible homes of the dominant cause. The search for the cause is illustrated in the diag- 
nostic tree in Figure 12.4. 

At this point the team had several choices. They could have tried assessing the assembly 
and component families, as discussed in Chapter 11, but they could not use the production 
assembly process. Moreover, at the time of the investigation, there was a proposal to bar-code 
the control arms with dimensional data that could be fed into the feedforward controller 
already in use to compensate for the frame geometry (see Chapter 16). With this proposed 
process change, all control arms would be measured and bar-coded at the supplier’s plant. 
Before implementing such an expensive proposal, the team wanted assurance that it would 
be worthwhile. If the control arm inputs were not dominant causes, there would be little 
reduction in pull variation from this costly change. 

The team decided to explore specific characteristics of the control arms and knuckle. Based 
on the proposal for the feedforward control scheme, they selected dimensional characteristics of 
the components, one for each control arm and two for the knuckle, thought to affect caster. 
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Figure 12.4 Diagnostic tree for search for the cause of excessive caster variation. 
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For the investigation, the team selected 30 sets of components (two control arms and a 
knuckle) from regular production over six days. From the baseline investigation, the team 
expected to see the full extent of variation in caster angle with this sampling scheme. They 
measured the four inputs on each set of components and the right caster angle on the 
assembled truck. The data are given in the file truck pull input-output. The standard devia- 
tion of the caster angle in the investigation is 0.22, somewhat smaller than the baseline 
standard deviation. 

We fit a regression model to describe the relationship between caster angle and the four 
inputs. The results from MINITAB are: 

 
 

The regression equation is 
caster  =  68.5  +  1.57  lower  ball  +  1.48  upper  ball  +  0.242  U  reading 

–0.184  L  reading 
 

Predictor Coef SE Coef T P 
Constant 68.546 9.922 6.91 0.000 
lower ball 1.5710 0.6905 2.28 0.033 
upper ball 1.4779 0.6839 2.16 0.042 
U  reading 0.24187 0.02282 10.60 0.000 
L   reading –0.18446 0.02844 –6.49 0.000 

 

S  =  0.1620 R-Sq = 87.8% R-Sq(adj)  =  85.6% 
 
 

The residual sum of squares is s = 0.162, a moderate reduction from the baseline vari- 
ation 0.24. Next we look at the scatter plots of the inputs by caster angle. We cannot see any 
strong relationships between caster angle and the individual component dimensions in 
Figure 12.5. 

To quantify the contribution of each component dimension, we fit regression models with 
one input at a time. We rank the inputs based on the residual standard deviation in Table 12.1. 

 
Table 12.1 Component dimensions ranked by residual 

standard deviation. 
 
 

Input 

 
 

Component 
Residual standard 

deviation 

U reading Upper control arm 0.19 

L reading Lower control arm 0.21 

Upper ball Knuckle 0.21 

Lower ball Knuckle 0.22 
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Figure 12.5 Scatter plots of right caster versus the component characteristics. 

 
 
 

None of the component dimensions is a dominant cause when considered singly. When 
we fit regression models with pairs of inputs, we see in Table 12.2 that the two control arm 
dimensions together produce the smallest residual standard deviation. 

We conclude that if we could completely remove the effects of the two control arms by 
using the feedforward controller, we would reduce the caster variation by about 20%. This 
reduction could be achieved only if the feedforward controller worked perfectly. Also, the 
sample size in this investigation is small and there is considerable uncertainty in the esti- 
mates of the standard deviations. 

The team used these results to argue that the proposed bar-coding of the control arms 
would not be cost-effective. They decided instead to investigate the feasibility of feedback 
control on caster angle (see Chapter 17). 
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Table 12.2 Pair wise component dimensions ranked by 
residual standard deviation. 

Input pairs Residual standard deviation 

U reading, L reading 0.174 

U reading, Upper ball 0.177 

U reading, Lower ball 0.195 

L reading, Upper ball 0.212 
 
 

Manifold Sand Scrap 
 

In the production of cast-iron exhaust manifolds, a foundry attributed many defects to the sand 
system used to create the molds. Historically, the sand-related defect rate was 2% with 
substantial variation shift to shift. Management assigned a project team to reduce sand- 
related scrap. 

The team used a run chart of the scrap rate by shift as a baseline. This chart was pro- 
duced daily as part of the management information system. They did not formally investigate 
the measurement system used to determine whether a manifold had a sand-related defect. 
They believed from past experience that this system was reliable. They decided to search 
for a dominant cause of the defects. 

Many characteristics of the molding sand such as temperature, compactness, permeability, 
moisture level, green strength, and percent friability were routinely measured during produc- 
tion. The team decided to use the available data to determine if any of these individual sand 
characteristics was a dominant cause. They chose not to use broad families of causes as is usu- 
ally done early in the search because the data were already available and the cost was low. 

It was not easy to get the data into a usable form. The sand characteristics were not 
measured for each casting. There were substantial and varying time lags between the meas- 
urement of a sand characteristic and the use of the sand to make a mold. For each casting, 
the time of casting was known only up to the nearest hour. Because of these traceability 
difficulties, the team used the hourly scrap rate as the output and the average of the sand 
characteristics over the hour as the inputs. 

The team selected 91 hours of production and made the linkages between hourly scrap 
rate and average sand characteristics. In each hour, the plant produced between 30 and 180 
castings. The data are given in the file manifold sand scrap input-output. The average and 
standard deviation of the hourly scrap rate were 0.017 and 0.023. The average rate 1.7% 
matches the baseline well. 

To analyze the data, the team ignored the changes in volume and focused solely on the 
proportion of sand scrap in each hour. Fitting a regression model to the hourly scrap rates 
with all of the sand characteristics, the residual standard deviation was 0.022, a very small 
reduction from the baseline value 0.023. None of the sand characteristics was a dominant 
cause. This is confirmed by looking at scatter plots of the sand scrap proportion versus the 
inputs. Some of the plots are given in Figure 12.6. 
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Figure 12.6 Scatter plot of sand scrap proportion versus moisture and compactness. 
 

The team noticed in the plot of hourly scrap rate versus temperature, shown in Figure 12.7, 
that there was a nonlinear relationship. Using MINITAB, they fit a quadratic regression model 
that included the square of the temperature. Part of the results are shown as follows: 

 
The regression equation is 
sand  scrap  proportion  =  6.16  —   0.121  temperature  +0.000596  temp.  squared 

 

Predictor Coef SE Coef T P 
Constant 6.1647 0.9629 6.40 0.000 
temperature –0.12116 0.01911 –6.34 0.000 
temp.  squared 0.00059610 0.00009476 6.29 0.000 

 

S  =  0.01922 R-Sq = 33.0% R-Sq(adj)  =  31.4% 
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Figure 12.7 Sand scrap proportion versus sand temperature with quadratic fit. 
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While the observed pattern makes physical sense, temperature is not a dominant cause. 
Holding sand temperature fixed (which would be very expensive) would not reduce the sand 
scrap proportion substantially. 

In the end the team was forced to conclude the investigation was a failure. They were 
not able to find a dominant cause, and they could not eliminate any of the suspects because 
the linkage between sand characteristics and the defect rate was poorly established. 

This example demonstrates the risk of using an investigation based on individual 
causes early in the search for a dominant cause. Even if the team could have eliminated the 
measured sand characteristics as dominant causes, they would have made little progress, as 
there were a large number of remaining suspects. 

 
 

Input/Output Relationship Investigation Summary 
 

Select as many suspects as possible that can be traced to the output. 
 
 

Question 

For the current process, which, if any, of the suspects is a dominant cause? 
 
 

Plan 
 

• Select a time frame in which we expect to see the full extent of variation in the output. 

• Select 30 or more parts spread across the time frame. 

• For each part, measure the output and all suspects. 
 
 

Data 

Record the output and suspect values, one row for each part. 
 

 
Analysis 

 
• Use regression to model the output as a function of all suspects simultaneously. For categor- 

ical suspects, use indicator variables.5 

• Plot the output versus each one of the suspects. For continuous suspects, fit the correspon- 
ding simple regression model to quantify any strong linear relationships. For categorical sus- 
pects, use one-way ANOVA. 

 
Conclusion 

 
• If the residual standard deviation in the first regression model is much less than the baseline 

standard deviation, one of more of the suspects is a dominant cause. 
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Comments 
 

In an input/output relationship investigation, we can select parts in one of three ways: 

• Using some time- and/or location-based sampling scheme 

• Based on the values of the inputs 

• Based on the output values 

In all cases, the goal is to get the full extent of variation so that we know the dominant cause 
has acted. 

With the first option, we need to have a large enough sample spread across appropri- 
ate times and locations to meet the goal. We can use the results of the baseline investiga- 
tion to help to define the sampling scheme. This option is the most common and was used 
in the examples discussed in this section. 

The second option requires more effort. For example, in the truck pull example, the 
team had information about the historical variation in the four inputs. They could have 
selected components with values for these dimensions at both ends of their historical 
range. This would have required extra measurement to find the appropriate compo- 
nents. Using extreme values for the inputs, we employ leverage and can use a smaller 
sample size. If we do not see the full extent of output variation with this plan, none of 
the selected inputs is a dominant cause. 

The final option corresponds closely to the group comparison plan. For example, in the 
window leaks problem, had the team been able to measure the severity of the leak, they 
could have fit a regression model to the data. By choosing parts with extreme output values, 
we are sure to see the full extent of variation. However, we may not be able to determine 
the values of many suspects due to lack of traceability. 

We need to be careful interpreting the MINITAB regression results. In the truck pull 
example, each of the four inputs is statistically significant because the p-value is small 
(less than 5%). This does not mean that any of the input is a dominant, or even large, 
cause, as we saw in the example. The same difficulty occurs in group comparisons when 
the input averages for the two groups are statistically significantly different, and yet there 
is no evidence that the input is a dominant cause. Hypothesis tests are not a useful tool 
for identifying a dominant cause. See further discussion of this issue in the Chapter 10 
supplement. 

Regression models can accommodate binary outputs, discrete inputs, quadratic terms, 
interactions between inputs, and so on.6 We can transform or combine the input values. We 
need to be careful using these models because we can be misled by nonlinear relationships, 
outliers, and influential observations. 
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Key 
Points 

 

• Group comparison and input/output investigations assess single causes and are 
most useful in the latter stages of the search for a dominant cause. 

• With a binary output, we can compare inputs measured on parts using a group 
comparison. We use plots of the individual values or box plots to look for large 
differences in the inputs for the two groups of parts defined by the output values. 

• With continuous output, we use regression models and scatter plots to show the 
input/output relationships and isolate dominant causes. We calculate the residual 
standard deviation from a simple regression fit to assess whether a particular 
suspect is a dominant cause. 

 
 
 
 
 

Endnotes (see the Chapter 12 Supplement on the CD-ROM) 

1. We show in the supplement that for a group comparison or an input/output investigation, 
there is a quick way to make all the desired scatter plots in MINITAB. 

2. In the chapter supplement we compare group comparison with paired comparison as 
suggested in Bhote and Bhote (2000). 

3. Regression analysis is a flexible analysis tool that has been extensively studied in the 
statistical literature. In the supplement, we explore some of the useful extensions in more 
detail and give references to further work. 

4. See note 1. 
5. See note 3. 
6. See note 3. 

 
 
 
 
 

Exercises are included on the accompanying CD-ROM 
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Chapter 13 
Verifying a Dominant Cause 

 
 
 
 
 
 

Approach each new problem not with a view to finding what you hope will be 
there, but to get the truth, the realities that must be grappled with. You may 
not like what you find. In that case you are entitled to try to change it. But do 
not deceive yourself as to what you do find to be the facts of the situation. 

—Bernard M. Baruch, 1870–1965 
 
 
 

e recommended the method of elimination and a series of simple observational 
investigations to isolate a dominant cause. Before proceeding with the next stages 
of the Statistical Engineering algorithm, we want to be sure that the suspected 

cause, here called a suspect, is dominant. We call this verification. 
In many applications of the algorithm, we have sufficient evidence from the search to be 

sure we have found a dominant cause and we require no further verification. For example, in 
the fascia cratering problem discussed in Chapter 11, the team found that craters occurred only 
on every fifth and tenth fascia taken from the mold. They concluded that the dominant cause 
was the application of mold release. They did not verify this conclusion because no other cause 
matched the observed pattern of craters. Similarly, in theV6 piston diameter example (Chapter 11), 
the team concluded that a dominant cause of diameter variation at the final gage was the diam- 
eter after Operation 270. The variation transmission investigation showed that pistons with 
large (small) diameters after Operation 270 were large (small) at the final gage. The team 
could explain the observed pattern in only one way and decided not to verify their conclusion. 

Why do we need to verify? In the search, we might have inadvertently ruled out a family  
that contains the dominant cause. More commonly, we may have selected the suspect from 
the remaining family of causes using our best judgment. If we are wrong, there may be other 
causes in the family that are dominant. Consider the problem of excess crossbar dimension 
variation discussed in Chapter 12. There, the team concluded that barrel temperature was the 
dominant cause based on the results of an input/output relationship investigation. They 
decided that verification was necessary because it was possible that the actual dominant cause 

was another (unidentified) cause in the same family (time-to-time) as barrel temperature. 
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To verify that a suspect is a dominant cause, we use an experimental plan, often called 
a designed experiment, where the value of the suspect is deliberately manipulated. Good 
references on experimental plans include Box et al. (1978), Ryan (1989), Wheeler (1990), 
and Montgomery (2001). 

Experimental plans are also important tools, as we will see in later chapters, for helping 
to assess the feasibility and determine how to implement several of the variation reduction 
approaches. In this chapter, we introduce the language and principles of experiments. We 
start with plans to verify a single suspect dominant cause. We then introduce more complex 
plans used to isolate a dominant cause from a short list of suspects. 

 
 
13.1 VERIFYING A SINGLE SUSPECT DOMINANT CAUSE 

To verify a single suspect, we plan a simple experiment where only the suspect is deliberately 
varied. For illustration, we use the engine oil consumption problem discussed in Chapter 10. 
Using stratification, the team had determined that a dominant cause acted in the plant-to-plant 
family. Based on knowledge of the engine, one of the few plant-to-plant differences that could 
explain the variation in oil consumption was a different supplier of valve lifters. The valve 
lifters were suspects because changing the valve lifters on a returned engine eliminated the oil 
consumption. Further application of the method of elimination pointed to a clearance dimen- 
sion in the lifter as a primary suspect. The team decided to use an experimental plan to verify 
that the valve lifter clearance dimension was the dominant cause of oil consumption. 

We introduce some terminology used in designed experiments. We plan to deliberately 
change one or more inputs. We call the different values the levels of the inputs. In the oil 
consumption example, clearance was the single suspect. The team decided to use two levels 
for clearance, corresponding to the high and low ends of its known historical range. We call 
these the low and high level of the suspect input. 

The suspect is a dominant cause if the output moves across its full extent of variation 
when we change the level of the suspect from low to high. 

An experimental run, usually shortened to a run, corresponds to setting the level of the sus- 
pect, running the process and measuring the output characteristic. In the example, a run corre- 
sponds to installing a set of lifters with low (or high) clearance into an engine, putting the engine 
through the accelerated dynamometer test, and measuring the oil consumption. We carry out one 
or more runs for each level of the suspect. If there is more than one run for a given level, we call 
this replication. To achieve balance, we use an equal number of runs for each level. 

We normally require a minimum of three or four replicates at each level of the suspect. 
More replicates will give more reliable conclusions but increase the cost of the experiment. 
Within a run, the process may produce a number of parts, some of which are measured. We 
call these parts repeats. We recommend the same number of repeats per run to preserve the 
balance. The connection between replicates, runs, and repeats is illustrated in Figure 13.1.1 

In the example, the team found three sets of lifters (each engine requires a set of eight 
lifters) with low clearance and three sets with high clearance by measuring clearance on 
incoming lifters from the poor supplier. In turn, they installed each set in an engine and 
measured the oil consumption. The experiment had six runs with no repeats. There were 
three replicates for each of the two levels of clearance. 
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Figure 13.1 Runs, replicates, and repeats for an experiment with a single suspect at two 

levels. 
 

To protect against some other input changing systematically as we change the suspect, 
we randomize the order of the runs, if feasible.2 This use of randomization is one of the 
main differences between observational and experimental investigations. We can randomize 
the order of replicates but not repeats. For example, we give the random order and the oil 
consumption for each run in Table 13.1. 

 
Table 13.1 Valve lifter clearance experiment and results. 

 

 
 

Level 
Average 

lifter clearance 

 
 

Run order 
Oil consumption 
(grams per hour) 

Low 5.0 4 23 

Low 7.0 3 24 

Low 8.5 6 29 

High 21.0 1 76 

High 24.0 2 113 

High 25.0 5 120 
 

To analyze the results, we rely on tables of averages and graphical summaries such as 
box plots or scatter plots. If the suspect is a dominant cause of variation, the output charac- 
teristic should vary over most of its full extent of variation when the value of the suspect 
changes from its high to low level. In Figure 13.2, we see that changing the valve lifter 
clearance has a large consistent effect on the oil consumption. The team concluded that 
valve lifter clearance was a dominant cause of the variation in oil consumption and that low 
clearance values led to less oil consumption. 
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Figure 13.2 Oil consumption by lifter clearance level. 

 
 
 

There were several limitations to this conclusion. First, the team did not have a good 
idea of the baseline in terms of the accelerated dynamometer test. They had measured only 
one engine from the field failures. Repeated testing of this engine in the dynamometer gave 
an average oil consumption of 117 grams per hour. The team was reassured because the oil 
consumption at the high clearance level was close to this average. Second, the verification 
experiment used only a single engine. The clear results for this engine may not carry over 
to others. Finally, the team did not have a direct connection between oil consumption in the 
field and in the result of the accelerated test on the dynamometer. In spite of these limita- 
tions, they proceeded, assuming that lifter clearance was the dominant cause. 

 
 

Crossbar Dimension 

In the crossbar dimension example, discussed in Chapter 12, the team identified barrel tem- 
perature as the dominant cause. For the verification experiment, the team chose the low 
level for barrel temperature as 75° and the high level as 80°. This covered close to the full 
range of barrel temperatures seen in the earlier investigation. 

Barrel temperature could be controlled for the experiment and changed in a few min- 
utes. As a result, the verification experiment used only two runs. The barrel temperature 
was set, 25 parts were made to ensure the temperature had stabilized, and the next 10 parts 
were selected and measured. There are two runs with 10 repeats per run and no replication. 

The data from the experiment are given in the file crossbar dimension verification and 
are presented in Figure 13.3. Barrel temperature has a large effect on crossbar dimension 
relative to the full extent of variation (given by the dashed lines). The team concluded that 
barrel temperature was the dominant cause of crossbar dimension variation. 

The lack of randomization was not an important limitation here since previous investiga- 
tions had shown that the dominant cause acted in the time-to-time family. Over the short 
time frame of the verification experiment, it is unlikely that we will see the full range of vari- 
ation in the output unless barrel temperature is a dominant cause. There is insufficient time 
for other causes in the time-to-time family to change substantially. 
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Figure 13.3 Crossbar dimension verification experiment results (dashed lines show the full 

extent of diameter variation). 
 
 

The lack of replication may have serious consequences. If the dominant cause is an 
interaction between barrel temperature and some other cause in the time-to-time family, we 
may see little effect on crossbar dimension when we change the barrel temperature, depend- 
ing on the unknown level of the second cause. To remove this uncertainty, we need to take 
the expensive step of replicating the whole experiment over several time periods, allowing 
the second cause time to change. 

 
 
13.2 ISSUES WITH SINGLE SUSPECT 

VERIFICATION EXPERIMENTS 
There are many issues in the planning and analysis of an experiment to verify a single suspect 
as a dominant cause. 

 
Do We Need to Verify the Suspect? 

In deciding if verification is necessary, the team should consider: 

• The risk that the suspect is not a dominant cause 

• The cost and difficulty of conducting the verification experiment 
To assess the risk, the team should think about how they identified the suspect and the size 
of the remaining family. The risk is high if the team has selected the suspect from a large fam- 
ily of remaining possibilities based on uncertain process knowledge. 

The cost of verification may be high, especially if the levels of the suspect are difficult to 
control. In the engine block porosity problem discussed in Chapter 10, the team noticed that 
severe porosity occurred when there was downtime in the operation. The team compared the 
porosity levels before and after breaks and identified two suspects, iron-pouring temperature 
and the addition of ladle wash. During work stoppages, iron that remained in the six pouring 
ladles cooled off since there was no external heat source. At the start of the break, ladle wash 
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was added to the ladles to protect the refractory (surface). Since the wash was water-based, 
the team suspected it was a source of porosity when the process was restarted. The team could 
not cheaply manipulate the pouring temperature, but they could change and control the level 
of ladle wash. They added the full amount of wash to three ladles selected at random and half 
the amount to the other three for two lunch breaks. In each case, they measured the porosity 
of the first 30 blocks poured (five from each ladle). The data are given in the file engine block 
porosity verification, and the results are discussed in the Chapter 13 exercises. Based on the 
results and process knowledge, the team eliminated ladle wash as a suspect. They declared 
pouring temperature a dominant cause, even though they did not verify it. 

 
Choosing the Study Population 

 
Most verification experiments are conducted over a short time using only a few parts. In 
the oil consumption example, the team used the same engine for all experimental runs. 
They assumed that the conclusions about valve lifter clearance for this engine would 
apply more broadly. The team could have strengthened the conclusion by doing the same 
six-run experiment with three different engines. This change to the plan would have increased 
the cost and complexity of the experiment. 

The more that we know about the nature of the output variation, the easier it is to select 
a study population. For example, if we know the time-to-time family contains the dominant 
cause, we can conduct the experiment over a short time period in which the process does not 
vary materially. There is a small chance of another cause in the time-to-time family changing 
substantially during the experiment. However, since the suspect is also in the time-to-time 
family, we may have difficulty manipulating its levels within this short time period. 

 
Choosing the Levels of the Suspect 

 
We select the two levels of the suspect for the verification experiment at the low and high 
end of its range of values in the regular process. If the suspect is a dominant cause, then 
changing from the low to high level will produce the full extent of output variation. To 
determine the levels, we have to know the range of variation of the suspect cause. To 
acquire this knowledge, we may have to carry out a small investigation on the suspect. 

There is some risk in making the levels of the suspect too extreme. First we may induce a 
different failure mode into the process. Second, we may fool ourselves in concluding that the 
suspect is a dominant cause because the very extreme levels, which rarely occur in the regular 
process, may induce the full extent of variation in the output. 

For a verification experiment, we strongly recommend using only two levels per suspect. 
Extra levels give little additional information about whether or not the suspect is dominant 
and increase the complexity of the experiment. 

 
Randomization and Replication 

 
In some cases we conduct a verification experiment over a short time frame without the pro- 
tection provided by randomization and replication.3 In planning the experiment—that is, 
defining a run, choosing the number of runs, and so on—we need to assess the risk that a 
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dominant cause, other than the suspect, acts within the time of the experiment. The nature 
of the variation in the output over time is a key piece of information to help assess this risk. 
If the dominant cause acts over the long term, as in the crossbar dimension example, we can 
plan a verification experiment over a relatively short time with two runs, one at each level 
of the suspect. If the dominant cause acts in the part-to-part family, we can use two runs 
with a moderate number of repeats. That way, if the suspect is not a dominant cause, the true 
dominant cause (that acts in the part-to-part family) will have time to generate close to the 
full extent of variation in the runs at both the high and low level of the suspect. 

When we do not know the nature of the variation over time, as in the oil consumption 
example, we need to be careful. We should use replication—that is, several runs for each 
level of the suspect—and randomize the order in which the runs are conducted. The key 
question is, “Is there some other unknown cause that might change from run to run in a way 
that matches the pattern of change of the suspect?” If the answer is yes, then we randomize 
the order of the runs with at least three replicates per level to reduce the risk. 

 
 

What If the Output Is Binary? 
 

If the output is binary, we suggest many repeats within each run of the experiment. We can 
then see if changing the suspect produces a large change in the proportion of defectives 
within each run. We can assess the importance of the change by comparing the proportions 
to the baseline. We need runs with many repeats to estimate the proportion of defectives at 
each level of the suspect. We may have difficulty holding the normally varying suspect con- 
stant for a long run. 

 
 

Is the Cause Dominant? 
 

In the analysis of a verification experiment, we always check that the observed variation in 
the output characteristic is a substantial proportion of the full extent of variation seen in the 
baseline. Otherwise the identified suspect is not a dominant cause. We do not recommend 
a formal hypothesis test to see if changing the suspect produces a statistically significant 
change in the output. Such a change may be too small to be helpful. 

 
What If the Suspect Is Not a Dominant Cause? 

 
What should we do if the results of the experiment show the suspect is not dominant? First, 
review the plan and conduct of the experiment in light of the information gathered during 
the search for the suspect. Some possible questions are: 

• What is the family of remaining suspects? Are there other suspects in this 
family? Are these suspects eliminated by the experiment? 

• Could we have missed an interaction with another cause that did not change 
during the verification experiment? 

If the answers to these questions are not helpful, then we have few options. First, review the 
diagnostic tree. Did we rule out any families or causes during the search without sufficient 
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evidence? If the answer is yes, we may have to reinitiate the search. Second, review the 
approaches (Chapter 8) and choose a working approach that is not cause-based. If none 
seem feasible, then we may decide that there is no dominant cause for this problem as for- 
mulated and go back to the beginning and reformulate the problem. Finally, we may aban- 
don the problem and accept that Statistical Engineering has failed. 

 
 

Care in Running an Experiment 

When conducting an experiment on a production process, the team requires excellent com- 
munication with all parties involved. In practice, things can go wrong, such as: 

• Lost runs or repeats within a run 
• The level of the suspect may vary within the run or be held at the wrong level 

over the run 

• Unsuspected consequences because of the intervention in the process 
More advice on planning and conducting experiments is given in Hahn (1984), Coleman 
and Montgomery (1993), and Robinson (2000). 

 
 
13.3 VERIFYING A DOMINANT CAUSE FROM A SHORT 

LIST OF SUSPECTS 
When verifying a dominant cause from a short list of suspects, the experimental plan is 
more complicated, but many issues are the same as in Section 13.2. Since we plan to inves- 
tigate all of the suspects simultaneously, we call a particular combination of the input lev- 
els used in a run a treatment. When the treatments are combinations of the levels of two or 
more inputs, we call the plan a factorial experiment. In other contexts, the inputs are called 
factors, which explains this name. In the plan for the experiment, we must: 

• Choose the high and low levels for each suspect. 

• Determine the treatments. 

• Define a run and determine the number of repeats. 

• Decide how much replication is necessary. 

• Decide whether randomization of the run order is worth the cost. 
We use two levels for each suspect, selected near the extremes of the normal range of 

variation of the input. If we have three suspects each with two levels, there are eight possi- 
ble treatments, as shown in Table 13.2. If we have two suspects, there are four possible 
treatments; with four suspects, there are 16 possible treatments. 

We recommend using all the possible treatments in the experimental plan. This is 
called a full factorial experiment. With three suspects, this means we need at least eight runs. 
Note that even if we do not replicate any treatments, the addition of other suspects in the ver- 
ification experiment gives us some built-in replication (also called hidden replication in 
some texts). As seen in Table 13.2, half the experimental runs will be conducted with each 
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Table 13.2   A two-level factorial experiment with three suspects and eight 
treatments. 

Treatment Level of Suspect A Level of Suspect B Level of Suspect C 

1 Low Low Low 

2 Low Low High 

3 Low High Low 

4 Low High High 

5 High Low Low 

6 High Low High 

7 High High Low 

8 High High High 
 
 

of the suspects at their low and high levels. For example, we use the low level of suspect C 
on four runs and the high level of suspect C on four runs. 

To analyze the results of factorial experiments, we rely on comparing averages and 
graphical displays. 

 
 

Brake Rotor Balance 

In the brake rotor balance problem described in one of the case studies, rotors required 
rework if their balance weight was too high. Using a group comparison, the team found two 
suspect dominant causes, core position in the mold and core thickness. Another suspect 
came from the chronological link between a change to new tooling in the core-making 
process and the increase in balance weight rejects. The team planned a verification experi- 
ment with the three suspects. 

In Table 13.3, we show the two levels of each suspect chosen to capture its full range 
of variation. The two core-related suspects were expected to produce good results at their 
nominal levels and deteriorating performance away from the nominal. The team decided to 
make eight rotors for each of the eight treatments. That is, there were eight runs with eight 
repeats. No treatment was replicated. 

 
 
 

Table 13.3   Suspects and levels for brake rotor verification experiment. 
 

Suspect Low level High level 

Tooling Old tooling (4-gang) New tooling (6-gang) 

Core position Offset (20-thousandths of an inch) Nominal 

Thickness variation 30-thousandths of an inch Nominal 
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Table 13.4   Brake rotor verification experiment results. 
 

 
 

Treatment 

 
 

Tooling 
Core 

Position 
Thickness 
variation 

 
 

Run order 
Average balance 

weight 

1 4-gang Offset 30-thousandths 8 0.56 

2 4-gang Offset Nominal 1 0.17 

3 4-gang Nominal 30-thousandths 3 0.44 

4 4-gang Nominal Nominal 7 0.08 

5 6-gang Offset 30-thousandths 2 1.52 

6 6-gang Offset Nominal 5 0.37 

7 6-gang Nominal 30-thousandths 4 1.34 

8 6-gang Nominal Nominal 6 0.03 
 

To obtain the cores for the experiment, the team measured thickness variation and sorted 
cores until they had 16 with high thickness variation and 16 with nominal thickness variation 
from each set of tooling. The experiment required careful planning since the balance weight 
of each casting can only be determined after shipping and machining. The castings were 
tagged for identification after production and tracked through the subsequent process. 

The team randomized the casting order of each treatment as given in Table 13.4. The 
64 rotors were cast and machined as planned. The experimental plan and the measured bal- 
ance weights are given in the file brake rotor balance verification. The average weight of 
the eight repeats for each run is given in Table 13.4. 

To analyze the data, we plot the weights by treatment in Figure 13.4. We see there are 
large differences in the balance weights produced by different treatments and relatively little 
difference within each treatment. We also notice that we have seen roughly the full extent of 
variation in balance weight given by the problem baseline (the dashed line on Figure 13.4). If 
this were not the case, we would conclude that we have not found a dominant cause. 

 
 

2 
 
 
 
 
 
 

1 
 
 
 
 
 
 

0 
 

1 2 3 
 

4 5 6 7 8 

Treatment 

 
Figure 13.4 Weight by treatment for the brake rotor verification experiment (dashed line 

gives the full extent of weight variation). 
 

 

We analyze the experimental results using the within-run average weight for each treat- 
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ment. We estimate and rank the effects of the suspects. A main effect due to a particular sus- 
pect is the difference in average output (high-low) for that input. For example, using the 
data in Table 13.4, the main effect for tooling is: 

 

 1.52 0.37 1.34 0.03 0.56 0.17 0.44 0.08 0.50
4 4

+ + + + + +
− =  

 

An interaction effect measures the change in the main effect for one input as a second input 
changes. For example, the interaction effect for tooling and thickness is: 
 

 1 1.51 1.34 0.56 0.44 0.37 0.03 0.17 0.08 0.43
2 2 2 2 2

 + + + +   − − − =        
 

 

The first term on the left side of the equation (except for an extra factor of 1⁄2) compares 
the effect of changing the tooling when the thickness variation is 30 thousandths. The 
second term measures the effect of changing the tooling when the thickness variation is 
nominal. Half the difference in the two effects is the interaction. 

We can similarly define interactions for three inputs and more. Interactions are important 
if the effect on the output of changing levels in one suspect depends on the level of another 
suspect. In terms of finding a dominant cause, we may get extreme values of the output 
only if both inputs are at their high level. In this instance, we say that the dominant cause 
is an interaction between the two suspects. 

In this experiment with eight treatment combinations, we can estimate seven effects. 
The number of effects estimable is always one less than the number of treatments. We fit a 
full model with all possible effects and construct a Pareto chart (see Appendix F for 
MINITAB instructions) of the unsigned effects to distinguish between those that are large 
and small. In Figure 13.5, we see that thickness variation, tooling, and the interaction 
between thickness variation and tooling are relatively large effects. The vertical dashed line 
in Figure 13.5 is added by MINITAB based on a test of significance. We ignore this dashed 
line in our interpretation. 

 
 

A: Tooling 
C B: Position 

C: Thickness 
A 

 

AC 
 

B 
 

AB 

ABC 

BC 

0.0    0.1    0.2     0.3    0.4    0.5    0.6    0.7     0.8 

 
Figure 13.5 Pareto chart of the effects for brake rotor verification experiment. 
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Table 13.5   Balance weight averages by thickness 
variation and tooling. 

 Thickness variation  

Tooling 0.0322 Nominal Average 

4-gang 0.50 0.12 0.31 

6-gang 1.43 0.20 0.82 

Average 0.97 0.16  
 

 

The effect of core position is small, so we eliminate it as a suspect dominant cause. 
Since tooling and thickness variation have a relatively large interaction, we need to study 
the effect of these two suspects simultaneously. In Table 13.5, we calculate the average bal- 
ance weight for the four combinations of tooling and thickness variation. 

We can see the interaction in the table. The effect of changing thickness variation is 
much greater for the 6-gang tooling. We use a multivari chart, as shown in Figure 13.6, as 
a convenient way to display the interaction. Note here we plot the individual values as well 
as averages. From the chart, we see that for the 4-gang tooling, the effect of changing core 
thickness variation from nominal to the extreme level is moderate. However, for the 6-gang 
tooling the effect is very large. 

In summary, the team found that core position had little effect, and the combination 
(that is, interaction) of the switch to the 6-gang tooling and thickness variation was a dom- 
inant cause. The conclusion that position was not important was a surprise, since that was 
identified as a suspect in a group comparison (see Chapter 12). This illustrates the poten- 
tial danger of proceeding without verification. The team could have spent time and effort 
trying to reduce core position variation with little impact on imbalance. 

We finish the story of the brake rotor balance problem in one of the detailed case studies 
on the CD-ROM. 
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Figure 13.6 Interaction between tooling and core thickness variation. 
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13.4 FURTHER ISSUES AND COMMENTS 

We discussed a number of issues in Section 13.2 relating to experiments to verify a single 
suspect. We need to consider all of these issues in any verification experiment. Here we con- 
sider some further issues relevant in the conduct of an experiment with several suspects. 

 
 

How Short a List of Suspects Do We Need? 

We recommend that you produce as short a list of suspects as possible before undertaking 
an experiment. If the list is long, the experiment becomes difficult to manage and expensive. 

First, if the number of suspects is k, even with only two levels per input, the number of 
possible treatments is 2k. For a full factorial design (one replicate of each treatment), the 
number of runs becomes unfeasible if the number of suspects is greater than about four. 
We can then use a fractional factorial experiment (see Chapter 15 and the supplement to 
Chapter 15) to reduce the number of runs, but we pay a price in terms of information about 
interactions. We look at another alternative in the chapter supplement.4 Second, all of the 
inputs in the list of suspects are naturally varying and, during each run of the experiment, 
we need to control the values to define the treatment for the run. With many suspects, the 
task of simultaneously controlling the inputs becomes very difficult. 

We illustrate the dangers of searching for a dominant cause among a long list of suspects 
using experimental plans with the following example. A team was assigned to reduce scrap 
due the geometric distortion of rear axle hypoid gear components during heat treatment. The 
pinion and gear set are critical to provide smooth and quiet transmission of power from the 
driveshaft to rear axle driveline. In a baseline investigation, the team found the scrap rate 
was 6%. Using Pareto analysis, they focused on the pinion. They decided to search for a 
dominant cause without using the recommended method of elimination. Based on existing 
process knowledge, the team identified five suspect causes: the average size of four pinion 
gear teeth, variation in tooth size, stem runout before heat treatment, position of the cone in 
basket (up or down) and the furnace track (left or right). They planned a full factorial 
experiment using all 32 possible treatment combinations of the five suspects at two levels 
each. They decided to have two pinions (repeats) per run, so they needed 64 pinions in total. 

The team could easily control the last two suspects for each run. However, to find the 
required eight pinions for each of the eight treatment combinations defined by the first three 
suspects, the team needed to measure and sort pinions before heat treatment. They continued 
measuring and sorting for a number of days. Then disaster struck. During the night shift, there 
was a shortage of parts for the heat treatment process. There was great pressure to sustain vol- 
umes, so when members of the night shift found the pinions set aside for the experiment, they 
processed them. The next day the team decided the proposed experiment was too compli- 
cated. They decided to look for a dominant cause with simpler observational investigations. 

 
 

Can We Verify the Suspects One at a Time? 
 

To verify a dominant cause from a list of suspects, we do not recommend the use of one-at- 
a-time experiments, where we change only a single suspect at a time. These traditional 
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experiments are a poor choice because they cannot find important interactions between the 
suspects. For more information on the dangers of one-at-a-time experiments, see Mont- 
gomery (2001). 

Sometimes, we can test all the suspects simultaneously. In the window leaks example 
discussed in Chapter 12, the team isolated the primary seal gap and the plastisol application 
as suspects. To verify, the team selected eight trucks that had passed the aggravated leak 
test and reinstalled the rear window using different windows and seals, ensuring that the 
primary seal gap exceeded 1.5 millimeters and that the plastisol score was between 3 and 4. 
Seven of the eight trucks leaked when they were retested. The conclusions from the verifi- 
cation experiment and group comparison are summarized in Figure 13.7. All the experi- 
mental runs came from the upper left quadrant and the results verified that the combination 
of poor plastisol application (low score) and high primary seal gap resulted in leakers. The 
team proceeded to improve the plastisol application process by ensuring that all trucks 
received a plastisol score greater than 4.5. 

 
 
 
 
 

Leakers 
(verified) 

Nonleakers  
(group comparison) 

 
Nonleakers 

(group 
comparison) 

 
Nonleakers 

(group comparison) 

 
 

Plastisol amount 
 

Figure 13.7 Window leaks verification experiment results. 
 
 
 

 
Verification Experiment Summary 

 
We have a list of one or more suspects. 

 
Question 

In the current process, are any of the suspects a dominant cause? 
 
 

Plan 
 

• For each suspect, choose two levels at the extremes of their normal range. 

• Define the runs using available information about the time-based family that is home of the 
dominant cause. 
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• Select the number of runs. For: 

–A single suspect: use at least three replicates for each level (at least six runs) 

–Two suspects: use a full factorial design and at least two replicates (at least eight runs) 

–Three or more suspects: use a full factorial design with at least one replicate for each treatment 

• Determine the number of repeats for each run. 

• Randomize the order of the runs as much as possible. 

• Make everyone potentially impacted aware of the plan. 
 

Data 
Carry out the experiment. Record the output, suspect levels, treatment number, and order for 
each run. Use a separate row for each repeat. 

 
Analysis 

 
• Plot the output against the treatment number. Add horizontal lines showing the full extent of 

variation in the output. 

• For several suspects, fit a full model and construct a Pareto plot of the main and interaction 
effects. For large interactions, create a multivari chart with the corresponding inputs. 

 
Conclusion 

 
• If the output does not show the full extent of variation, then none of the suspects is a domi- 

nant cause. 

• A suspect with a large effect relative to the full extent of variation is a dominant cause. 

• If there is a large interaction, the dominant cause involves two (or more) suspects. 
 
 
 
 
 

We summarize the terminology for experimental plans in Table 13.6. 
 

 
 
 

Table 13.6 Designed experiments terminology. 
 

Term Meaning 

Balance An experimental design is balanced if there is the same number of replicates 
for each treatment and the same number of repeats in each run. 

(Full) factorial 
experiment 

An experimental plan where all possible combinations of the input levels are 
used to define the treatments. 

Interaction effect The change in the main effect for one input as a second input changes. 

Continued 
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Table 13.6 Designed experiments terminology. (Continued) 
 

Term Meaning 

Levels The different values of an input characteristic used in an experiment. 

Main effect The change in the average output produced by a change in one input. 

Randomization Randomizing the order of the runs. 

Repeat More than one part (or measurement) made within a run. 

Replication Carrying out more than one run for each treatment. 

Run Assigning the treatment, running the process, and measuring the output. 

Treatment A particular combination of input levels. 
 
 
 
 

Key 
Points 

 

• We use an experimental plan to verify that one or more suspects obtained using 
the method of elimination is a dominant cause. 

• For each suspect we choose two levels at the extremes of its normal range. 
• In the verification experiment, we recommend: 

–For a single suspect: three or more replicates for each level 
–For two suspects: two or more replicates at each of the four treatments 
–For three or four suspects: a full factorial experiment 

• We identify a dominant cause by examining main effects and two input interactions. 
• In the analysis, we check that the full extent of variation in the output is seen 

over the runs of the experiment. Otherwise, none of the suspects varied in the 
experiment is a dominant cause. 

 
 
 
 

Endnotes (see the Chapter 13 Supplement on the CD-ROM) 

1. The difference between repeats and replicates is a great source of confusion in the analysis of 
experimental data. We explore this issue briefly in the supplement to justify the analysis methods 
we propose. 

2. When we identify a suspect cause using the method of elimination, we know that the pattern of 
variation in the suspect must match that of the output. To verify that the suspect is a dominant 
cause, we must show that there is no other cause that also matches this pattern of variation. In the 
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supplement, we explain how randomization and replication can help to reduce the risk of falsely 
identifying a suspect as the dominant cause. We also explain how we implicitly use blocking, 
the third fundamental principle of experimental design, to help to avoid this risk. 

3. See note 2. 
4. In the supplement, we briefly discuss an alternative verification experiment based on a 

technique called variables search. 
 
 
 
 
 

Exercises are included on the accompanying CD-ROM 
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PART IV 
Assessing Feasibility and Implementing 

a Variation Reduction Approach 

Opportunity is missed by most people because it is dressed in overalls and 
looks like work. 

—Thomas Edison, 1847–1931 
 
 
 

n this final part of the book, we address revisiting the choice of working variation 
reduction approach, the issues around the assessment, implementation of each approach,  

and the validation of a solution. The choice of working approach may need to be recon- 
sidered in light of the process knowledge obtained in a search for a dominant cause or in assess- 

ing feasibility of a particular approach. We provide detailed how-to directions for assessing 
feasibility, including consideration of costs, and for implementing each of the seven 
approaches. We also discuss validating a solution. 

 
 

Define focused problem 
 

 
 

Check the measurement system 
 
 

Choose working variation reduction approach 
 

Fix the obvious 
Desensitize process 
Feedforward control 

 
Feedback control 
Make process robust 
100% inspection 

 
Change process (or subprocess) center 

 
 

Find and verify a dominant 
cause of variation 

 
Assess feasibility and plan 

implementation of approach 
 

Implement and validate solution 
and hold the gains 

 
Statistical Engineering variation reduction algorithm. 



 

 



 

A 

 
 

14 
Revisiting the Choice of Variation 

Reduction Approach 
 
 
 

If at first you don’t succeed, try, try again.   
—Proverb 

 
 

fter conducting a search for a dominant cause, the team should reconsider their 
choice of working variation reduction approach. In this chapter, we consider the 
options and how to choose an approach. 

If a specific dominant cause has not been found, the team must select one of the three 
non-cause-based approaches, resume the search for a more specific cause, or abandon the 
project. If a dominant cause has been found, the team can now consider the feasibility of any 
one of the variation reduction approaches. They will have accumulated substantial information 
about the behaviors of the output and the causes that can be used in selecting the approach. 

There are four options that directly use the knowledge of the dominant cause: 

• Fix the obvious. 

• Compensate for the variation in the dominant cause (desensitization or 
feedforward control). 

• Reformulate the problem in terms of the dominant cause and reapply the 
algorithm (that is, reduce variation in the cause). 

• Continue the search for a more specific dominant cause. This is an informal 
version of reformulation. 

The variation reduction approaches that do not require knowledge of a dominant cause 
should also be considered: 

• Use feedback control on the output. 

• Make the process robust to variation in the unknown dominant cause. 

• Implement or tighten 100% inspection on the output. 
 
 
 
 

213 
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Given the knowledge accrued during the search for the cause, the non-caused-based 
approach may be more or less feasible. The final option is to abandon the project and devote 
the resources to another problem with a greater likelihood of success. 

We explore how to decide among these choices. Since there are few general rules, we 
present a large number of examples. We consider costs and likelihood of success. There is 
considerable risk and uncertainty in each choice, but we cannot proceed without making 
this decision. 

 
 
14.1 FIXING THE OBVIOUS: IMPLEMENTING AN 

AVAILABLE SOLUTION 

In many problems, once a dominant cause has been identified, the team has sufficient 
knowledge to determine an obvious solution and move to the Implement and Validate Solution 
stage of the algorithm. In making this decision, the team must consider possible side effects 
and the cost of the fix relative to the costs associated with the problem. 

The definition of obvious depends on the process and the level of process knowledge. 
The team has an obvious fix if they are confident that it is feasible and there is no need to 
learn more about the process before it can be implemented. The key issue here is cost. 
There may be obvious solutions to the problem available at the start of the project (for 
example, buy new equipment), which are eliminated because of high cost. The team may 
now identify a lower-cost obvious solution that was not apparent without knowledge of the 
dominant cause. 

There are many examples. 
 
 

Engine Block Leaks (Center Leaks) 

In Chapter 6, we described a project of leaking engine blocks and how the project was 
focused to three problems related to leaks at three different locations. The team discovered 
that the dominant cause of the center leakers was core breakage during the casting process. 
Based on their process knowledge, the team knew they could eliminate or reduce the core 
breakage by better supporting the core in the mold during the pouring operation. The team 
added several chaplets (small steel inserts) set in the mold to support the core. They knew 
that this process change would produce no unfavorable side effects. The change eliminated 
the problem of center leakers. The extra cost of the chaplets was more than justified by the 
reduced scrap costs. 

 
 

Engine Block Leaks (Rear Intake Wall) 

The team also found leaks at the rear intake wall of the casting. Using a group comparison 
(see Chapter 12), they discovered that the dominant cause of this type of leak was wall 
thickness at a specific location in the left rear wall. Thin walls led to leaks. An obvious 
solution was to change the mold to make the wall thicker. This process change could be 
made with a small one-time cost but had negative consequences in terms of the weight of 
the block. The team made the change and virtually eliminated rear intake wall leakers. 
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Truck Pull 

In Chapter 10 and elsewhere, we described a project to reduce variation in a truck wheel 
alignment process. The team had access to alignment data that was automatically collected 
for every truck produced. Each truck was measured on one of four alignment machines. At 
one point during the project, the team looked at the right caster data, stratified by the align- 
ment machine. The daily averages are plotted in Figure 14.1. 

The team was surprised to see the persistent differences among the four gages. The trucks 
enter the gages haphazardly, so the observed differences must be due to differences in the 
alignment machines. The alignment machine was a dominant cause of variation in right 
caster. This cause was not acting during the baseline investigation or the initial investigation 
of the measurement system. The team took immediate action to recalibrate the four gages to 
remove the systematic differences. To prevent recurrence, they established a daily monitoring 
program to correct such differences. There was a small cost associated with the daily check. 

 
 

4.8 
 
 
 
 

4.3 
 
 
 
 
 

3.8 
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Day 

 
Figure 14.1   Right caster daily averages by alignment machine. 

 
 

Cylinder Head Shift 

In a casting operation, excess side shift variation was a problem. A multivari investigation 
(see Chapter 11) found the dominant cause of side shift acted in the pattern-to-pattern 
(cavity-to-cavity) family. The team had the process knowledge to make a one-time adjust- 
ment to the dies to shift the pattern averages and reduce the pattern-to-pattern side shift. 
They then monitored the process to detect the recurrence of the problem before it became 
material. The value of the variation reduction was greater than the costs of the one-time 
pattern adjustment and the monitoring. 

 
 

Fascia Cratering 

In the fascia cratering example discussed in Chapter 11, the team found that major cratering 
occurred on every tenth fascia. They concluded that the dominant cause was the mold 
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release spray. With this knowledge, an obvious (to the team) and immediate short-term 
solution was to wipe the mold after the spray. This solution had the potential to introduce 
dirt in the mold and met with resistance from the mold operators. The obvious fix was not 
feasible. The team decided instead to investigate different mold sprays. That is, they adopted 
desensitization as the working approach. 

 
Window Leaks 

As reported in Chapter 12, a team found that the dominant cause of truck rear window 
upper ditch leaks was an interaction between the primary seal gap and the plastisol appli- 
cation to the seams. We reproduce the results in Figure 14.2. 

The pattern on the plot suggested an obvious fix. The instructions were changed so that 
the operators where the plastisol was applied, brushed the plastisol to ensure coverage of 
the critical seals. Because of this change, the rear window upper ditch leaks were totally 
eliminated. Note that the variation in primary seal gap was not changed. The process was 
made less sensitive to this variation. The team also decided to pursue another solution 
based on changing the primary seal to reduce the variation in gap. The operating costs of 
this proposed solution were less than those of the obvious fix. However, management post- 
poned implementation of this alternative solution because it required robotic application 
and substantial capital expenditure. 
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Figure 14.2 Plot of primary seal fit by plastisol amount. 

 
 

Hubcap Damage 

Because of customer complaints, a team was assigned a goal of reducing the incidence of 
wheel trim and hubcap damage. The team discovered that the dominant cause of broken 
retaining legs and other damage was a combination of cold weather and contact with curbs. 
Through comparison with competitors, they found that an obvious fix was to change the 
hubcap material and design. The team replaced the brittle existing ABS hubcap with a new 
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design made of mineral-reinforced polypropylene. In addition, they increased the number of 
retaining legs. The increased cost was justified by the elimination of customer complaints. 

 
Assembly Nuts Loose 

In an assembly process, a power wrench driven by pneumatic pressure tightens nuts to a 
specified torque. The dominant cause of loose nuts was found to be occasional drops of 
pneumatic pressure. An air pressure meter was installed in the air line. An alarm sounded 
if the pressure dropped below a critical point providing constant inspection of the cause. 
This is an example of error proofing as defined by Shingo (1986). 

 
Comments 

The Fix the Obvious approach is a catchall category that makes use of the other variation 
reduction approaches. For example: 

• 100% Inspection (for example, loose assembly nuts) 
• Moving the output center (for example, rear intake wall leakers, cylinder head 

side shift, truck pull) 

• Desensitizing the process (for example, window leaks) 
When applying the Fix the Obvious approach, the team should ensure the problem 

does not recur. In the truck pull, camshaft journal diameter, and cylinder head shift examples, 
the fix was obvious but all three problems were likely to recur unless a new control or reg- 
ular maintenance scheme was put in place. 

Fix the Obvious is the preferred choice because it applies when there is a clear solution 
to the problem. There is little uncertainty that the fix will be effective. The main consider- 
ations are the cost of the fix relative to the gain and potential negative side effects. 

 
 
14.2 COMPENSATING FOR VARIATION IN THE 

DOMINANT CAUSE 

If there is no obvious solution that is economical, we can look for changes in the process 
(that is, changes in fixed inputs) that will eliminate or reduce the effect of the dominant 
cause. In particular, we are interested in deciding whether we can compensate for variation 
in the dominant cause through process desensitization (Chapter 16) or feedforward control 
(Chapter 17). 

 
Refrigerator Frost Buildup 

In Chapter 1, we described the problem of frost buildup in refrigerators, where the dominant 
causes were environmental and usage inputs outside of the control of the manufacturer. The 
team could not reduce variation in the causes and adopted the Desensitization approach. 
The team had several design changes in mind that might reduce the effect of the environ- 
mental causes of frost buildup. See Chapter 16 for further details. 
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Iron Ore Variation 

A team was charged with reducing variation in iron ore composition as the ore was loaded into 
ships. This was a reformulated problem from the customer, a steel mill that wanted to reduce 
variation as the ore was processed. The dominant cause of the variation was the composition 
of the ore as it came out of the ground. To compensate for this cause, the team decided to look 
at new ways to create and dismantle stockpiles that were placed in the process to help blend the 
ore. They could not estimate the costs or benefits without further investigation. 

 
Crossbar Dimension 

In Chapter 12, we discussed a problem to reduce variation in a crossbar dimension of a 
molded part. From the baseline investigation, the full extent of variation was –0.3 to 2.0 
thousandths of an inch. The team found that barrel temperature was a dominant cause as 
shown in Figure 14.3. 

At first, the team considered reformulating the problem. Reducing variation in barrel 
temperature would result in reduced variation in crossbar dimension. Looking closely at 
Figure 14.3, the team realized there was evidence of a nonlinear relationship between barrel 
temperature and crossbar dimension. We have added a quadratic fit to the scatter plot to 
make this conclusion clearer. The variation in crossbar dimension is greater as the barrel 
temperature varies from 74° to 77° than it is if the barrel temperature ranges from 77° to 
80°. The team decided to try to desensitize the process to barrel temperature variation by 
increasing the average barrel temperature. 

The team could not predict the benefits of increasing the average barrel temperature 
from the data shown in Figure 14.3 since they needed to extrapolate beyond the normal 
range of barrel temperature. The team could assess the direct cost of the change but they 
were unsure if the process would gracefully tolerate barrel temperatures much above 80°. 
That is, there might be negative side effects. Further investigation was required. 
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Figure 14.3 Scatter plot of crossbar dimension versus barrel temperature. 
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Comments 

There is uncertainty about finding an effective solution if the team decides to compensate 
for the effects of a dominant cause. In the refrigerator frost buildup example, the team did 
not know if they could find affordable changes to the design that would desensitize the 
refrigerator to changes in the usage and environmental inputs. They could not quantify the 
benefits until they had investigated the changes. They needed to carry out further process 
investigations with no certainty of an efficient and effective resolution. Fortunately, they 
were able to find good design changes. Otherwise, they would have had to absorb the high 
costs of investigation and reconsider the other variation reduction approaches. 

 
 
14.3 REFORMULATING THE PROBLEM IN TERMS 

OF A DOMINANT CAUSE 

We can reduce output variation by reducing the variation in a dominant cause. In reformu- 
lation, we restart the algorithm with a new problem defined in terms of the dominant cause. 
We specify the goal for the new problem so that we meet the goal of the original problem. 
Reformulating the problem is the classic route to variation reduction. Rephrased, we are 
told to find the “root cause” of the problem and then somehow deal with that cause, hopefully 
with an obvious fix. 

Reformulation is attractive because the problem is moved upstream. This may reduce 
the cost and complexity of the solution. Reformulation is unattractive because we are replacing 
one problem with another and we may be no closer to a solution. Note that we may adopt 
any of the seven variation reduction approaches to solve the reformulated problem. Also, we 
may reformulate several times before adopting one of the variation reduction approaches. 

 
 

Sunroof Flushness 

Customers were dissatisfied if the sunroof was not flush with the roof of the car. In the sun- 
roof installation process, there was a 90% rework rate due to flushness variation. A team set 
out to reduce the rework costs. 

Flushness was the difference in height between the sunroof seal and the metal roof. It 
was measured using digital calipers at six points, three at the front and three at the back of 
the sunroof. A baseline investigation showed that flushness variation was largest at the two 
front corners. Front corner flushness ranged between –3.5 and 4 millimeters, with an esti- 
mated standard deviation of 1.25 millimeters. The team established a goal of reducing the 
front corner flushness standard deviation to less than 0.5. 

Based on engineering knowledge, the team suspected the dominant cause of flushness 
variation was either crown height or attachment pad height. When the roof panel was 
adapted to allow installation of a sunroof, six attachment pads were added. The team carried 
out an investigation using two sets of six vehicles with extreme flushness. For each vehicle, 
they removed the sunroof module and measured the attachment pad heights and roof crown 
height at the front and back. The data are given in the file sunroof flushness input-output. 
Here we report the results for left front flushness only. The team used regression analysis 
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Figure 14.4   Scatter plot of flushness versus left front pad height. 

 
 

and the scatter plot shown in Figure 14.4 to demonstrate a clear connection between the 
corner flushness and pad height closest to the corner. Roof crown height was eliminated as 
a suspect. 

The team assumed that pad height was the dominant cause of the variation in flushness 
without verifying this conclusion. They decided to reformulate the problem in terms of pad 
height. They carried out a baseline investigation and found the standard deviation in pad 
height was 0.165 millimeters. 

To determine a goal for the reformulated problem, they used the fitted equation from 
the regression analysis: 

 
The regression equation is 
left front  flushness  =  –0.126  +  1.05  left front  pad  height 

 

Predictor Coef SE Coef T P 
Constant –0.12631 0.09352 –1.35 0.207 
left fro 1.04811 0.05015 20.90 0.000 

 

S  =  0.3222 R-Sq = 97.8% R-Sq(adj)  =  97.5% 
 

Analysis of Variance 
 

Source DF SS MS F P 
Regression 1 45.348 45.348 436.87 0.000 
Residual Error 10 1.038 0.104   
Total 11 46.386    

 

The regression analysis corresponds to modeling the output/cause relationship as 
 
 

flushness = a + b* pad height + noise 
 

 

where a + b* pad height represents the effect of the dominant cause and noise the effects 
of all other causes. The model constants a (intercept) and b (slope) describe the approximate 
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linear relationship between the output flushness and the dominant cause pad height. Based 
on the model (see Chapter 2), and assuming that the dominant cause varies independently 
of the other causes, we have 

 
 ( ) ( ) ( )2 22flushness pad height noisesd b sd sd= +  
 
From the regression analysis, we estimate b as 1.05. From the two baseline investigations, 

we have estimates of the standard deviations of flushness and pad height. Substituting the 
three estimates into the given equation, we get an estimate for the standard deviation of the 
noise to be 0.165 millimeters. 

Now, we can use the equation to translate the goal of reducing the flushness standard 
deviation variation to 0.5 into a goal in terms of pad height variation. We use the estimate 
for the slope b from the regression analysis and the estimated standard deviation of noise 
from the given calculation. Substituting the estimated values for b, the standard deviation 
of noise, and the goal for flushness standard deviation, we get 
 
 ( )22 20.5 1.05 pad height 0.165sd= +  
 
Solving gives 0.45 as the goal for pad height standard deviation. To meet the original goal for 
flushness, in the reformulated problem we need to reduce pad height variation by over 60%. 

 
Battery Seal Failure 

Management assigned a team to reduce the frequency of battery leaks. Using a group com- 
parison, the team determined that the dominant cause of leaking was seal strength between 
the top and bottom of the battery casing. See the results in Figure 14.5. They concluded that 
stronger seals would eliminate the leak problem. The problem was reformulated to increase 
the average seal strength. Based on Figure 14.5, the team set the goal to increase seal 
strength to a minimum of 320 pounds. They did not try to quantify the relationship between 
the continuous cause, seal strength, and the binary output and hence, they could not quantify 
the potential gain of increasing the average seal strength. 

 
 
 

Leak 
 

Yes 
 

No 

300   310   320   330   340   350   360   370   380   390 

Seal strength 
 

Figure 14.5 Dot plot of seal strength for leakers and nonleakers. 
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In this example, reformulation is especially useful since the original output is binary and 
the dominant cause is continuous. It should be easier to find a solution to the reformu- lated 
problem than the original since, in any investigation, more information is available from each 
battery when we measure a continuous as compared to a binary output. Since seal strength is a 
destructive measurement, this gain is offset by increased costs. 

 
Roof Panel Updings 

In a stamping operation, there was a problem with updings (small outward dents in the metal 
surface) on a roof panel. There was 100% inspection to sort the panels. Those with 
updings were reworked. The team established the baseline and also found that the 
measurement system was adequate. Next, using a multivari investigation (see the exer- cises 
in Chapter 11), they found that the dominant cause acted in the pallet-to-pallet family. 
Further investigations showed that updings were caused by particles on the metal blanks. 

The team decided to reformulate the problem in terms of the amount of particulate on the 
steel blanks. Since the dominant cause acted from pallet to pallet, the team was able to use 
leverage (see Section 9.3) to roughly define the baseline for the amount of particulate. They 
determined the full extent of variation for particulate amount by counting the total number of 
particulates on blanks selected from two pallets that had produced stamping with extreme 
low and high upding counts. This was an inexpensive way to establish the baseline variation 
compared with the recommended investigation for a new problem as given in Chapter 6. 

 

 
Comments 

We choose to reformulate only after we have considered the other options. Reformulation of a 
problem is not a solution. That is, we cannot continue to reformulate indefinitely. Eventually 
one of the variation reduction approaches must be applied. If we can repeatedly find a dominant 
cause, we can reformulate the problem a number of times. However, the potential benefit 
arising from solving the reformulated problem is reduced in each iteration by the variation not 
explained by the identified dominant cause(s). Also, the final cause may be outside local 
control. 

With reformulation, the dominant cause (an input) becomes the output. We then establish a 
baseline for the new output. We set the goal for the reformulated problem by exploiting what 
we have learned about the relationship between the cause and the original output. We can set this 
goal formally, as in the sunroof flushness example, or informally, as in the battery seal failure 
example. 

There is little value in reformulating a problem in terms of a cause that is not dominant. 
Suppose, as in the sunroof flushness example, we found a cause that is linearly related to the 
output so that we have the equation 

 

 
 ( ) ( ) ( )2 22 noisesd output b sd cause sd= +  
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If the cause is not dominant, then the standard deviation of the noise, the variation due 

to all other causes, is large fraction of the standard deviation of the output. Even if we com- 
pletely eliminate the effect of the cause, we do not reduce the output standard deviation 
substantially. 

 
 
 
14.4 CONTINUING THE SEARCH FOR A MORE 

SPECIFIC DOMINANT CAUSE 

Continuing the search for a more specific dominant cause is similar to reformulation, but we 
proceed less formally. The key is the baseline we use in the search. With reformulation, we 
determine a new baseline and goal in terms of the identified dominant cause. If we continue 
the search for a more specific cause, we use the original baseline and continue to measure 
the original output. 

We select this option when the identified dominant cause is vague and there is no obvi- 
ous solution. In the truck pull example described earlier, the dominant cause of variation 
was systematic differences among the four gages. This was not a specific cause since we 
did not identify what was different among the four gages. However, an obvious fix was 
available. 

Here are some examples when the team decided to look for a more specific cause. 
 
 

Engine Oil Consumption 

In the oil consumption example, discussed in Chapter 13, the supplier of the valve lifters 
was a dominant cause of variation. The two engine assembly plants had different valve 
lifter suppliers. An immediate fix to reduce customer complaints was to eliminate the valve 
lifter supplier linked to the excess oil consumption. However, moving to a single supplier 
was not practical for volume and contractual reasons. Since the identified cause was a large 
family of inputs including all the specific differences between the two suppliers, the team 
decided to look for a more specific dominant cause. In particular, the team explored the 
variation within the valve lifters from the problem supplier to determine a more specific 
cause of oil consumption. 

 
 

Camshaft Lobe BC Runout 

In the camshaft lobe runout example discussed in Chapter 10 and elsewhere, the problem 
was excess base circle runout. Through a number of investigations, the team found that a 
dominant cause of runout variation was heat treatment spindle as illustrated in Figure 14.6. 
The data for Lobe 12 are given in the file camshaft lobe runout variation transmission. 

Based on this dominant cause, the team could not see how to apply one of the variation 
reduction approaches. To keep up with volume requirements, they had to continue using 
spindle 3. One possible solution was to reduce the runout center for spindle 3. However, the 
team did not know of an adjuster, and since runout is a measure of variation itself, finding 
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Figure 14.6   Plot of final base circle BC runout by heat treatment spindle. 

an adjuster seemed difficult. The team decided to look for a more specific cause. They 
proceeded by comparing the heat treatment spindles, looking for reasons why they were 
different. In the end they were unable to find a specific cause. Out of desperation they 
arranged for overdue maintenance on the heat treatment operation. This somehow elimi- 
nated the spindle-to-spindle difference. Next, the team had to worry about how to prevent 
recurrence of the problem. They decided to monitor the runout after heat treatment on two 
parts per day from each spindle. Any large spindle-to-spindle differences triggered main- 
tenance of the heat treatment operation. 

 
Crankshaft Main Diameter 

In the crankshaft main diameter problem considered in one of the case studies, the dominant 
cause of final diameter variation was found to be the diameter at an intermediate process- 
ing step. There was no obvious fix based on this knowledge. Also, there was no way to 
desensitize the final diameter variation to diameter variation at the intermediate step. The 
only processing step between the intermediate and final gages that changed the diameter 
was lapping to polish the surface. The team opted to look for a more specific upstream cause 
and continued to use the final diameter baseline. 

 
Comments 

We distinguish between reformulation and continuing the search for a more specific cause 
based on whether or not we determine a new baseline. We are more likely to reformulate in 
cases where the cause is a different continuous characteristic than the output. If the dominant 
cause is a discrete characteristic, like machine number or process stream, we typically 
continue the search for a more specific dominant cause without reformulating. 
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14.5 DEALING WITH DOMINANT CAUSES THAT 
INVOLVE TWO INPUTS 

When a dominant cause is not a single input, there are a variety of ways to proceed. The 
choice of the best variation reduction approach depends on the nature of the dominant 
causes and the problem context. Sometimes we can address such problems by addressing 
only one of the causes. In other cases, we need to address both causes either simultaneously, 
or separately, possibly with different variation reduction approaches. 

We illustrate using three examples. 
 
 

Window Leaks 

In the truck window leaks problem, the dominant cause of upper ditch leaks was the 
combination of a large primary seal gap and poor plastisol application to the seams. The 
proposed and implemented solution was a process change that required operators to brush 
the plastisol to ensure coverage of the critical seals. With this solution, the team addressed 
only one of the inputs involved in the dominant cause. 

 
 

Door Closing Effort 

The dominant cause of door closing effort, as discussed in Chapter 10, involved both 
the component and assembly families. Here there were two large causes acting in sepa- 
rate families. The team proceeded to address each cause (family) separately. Since 
each cause on its own was not dominant, they could not meet the project goal without 
addressing both. 

 
 

Steering Wheel Vibration 

In a problem to reduce steering wheel vibration, the dominant causes were found to be 
imbalances in two transmission components. Both components contributed equally to the 
problem. The proposed solution was to desensitize the process to both causes by vectoring 
the two components during the installation so that their imbalances tended to cancel out. 
Alternately, the team could have reformulated into two problems to address the imbalance 
in each component separately. 

 
 
14.6 SUMMARY 

The thought process in choosing how to proceed after finding a dominant cause is summarized 
in Figure 14.7. 
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Figure 14.7 Flowchart to help decide how to proceed after finding a dominant cause. 
 
 
 
 

Key 
Points 

• There are three options once a dominant cause has been found: 
–Fix the obvious. 
–Compensate for the cause using desensitization or feedforward control. 
–Reformulate the problem in terms of the dominant cause and reapply the algo- 

rithm (that is, reduce variation in the cause). 
–Continue searching for a more specific dominant cause. 

• Subject to cost constraints and concerns over side effects, implementing an obvi- 
ous fix is the most desirable option. 

• There is a risk of choosing an approach that will be neither effective nor efficient 
because of the lack of knowledge. However, we cannot proceed with making a 
choice. 

 
 
 
 
 

Exercises are included on the accompanying CD-ROM 
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15 
Moving the Process Center 

 
 
 
 
 
 

This time, like all times, is a very good one, if we but know what to do 
with it. 

—Ralph Waldo Emerson, 1803–1882 
 
 
 

oving the process center is the only approach that directly addresses an off-target 
process center. The goal of the approach is to find a way to move the process out- 
put center either closer to the target or in the desirable direction if higher or lower 

is better. An example for a higher is better output is shown in Figure 15.1. We do not need 
to identify a dominant cause to apply this approach. 

The only requirement for moving the process center is an adjuster; that is, a fixed 
process input that can be changed to move the process output center. 
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Figure 15.1 Changing the process center. 
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In many processes, the team will have an available adjuster and thus an obvious fix to 
the problem. To find an adjuster, we recommend an experimental plan. We use engineering 
knowledge and experience with the process to choose fixed inputs, called candidates, to 
vary in the experiment. There is a risk that an adjuster will not be found. 

The potential costs of moving the process center include the costs of: 

• An experiment to find an adjuster, if necessary 

• A one-time change to the adjuster 

• The ongoing operation of the process at the new setting for the adjuster 
To assess the potential benefit of moving the process center, we imagine shifting the 

baseline process center to a new value. 
 
 
15.1 EXAMPLES OF MOVING THE PROCESS CENTER 

To illustrate, we discuss three examples where the team had to first find an adjuster before 
they could apply the Move the Process Center approach. 

 
Battery Seal Failure 

In the production of automotive batteries, a sealing process joins the top of the batteries to 
the base. Due to field complaints about leaky seals and high rework costs in the plant, man- 
agement assigned a team to address the problem. Looking back at several months’ production 
records, the team estimated that the baseline within-plant leak rate was 2.3%. The goal was 
to reduce this rate to less than 0.5% with the assumption that this would eliminate most of 
the field failures. 

Note that the output is binary. Seals either leak or do not leak. The team suspected that a 
dominant cause of leaks was low tensile strength of the seal. To assess this idea, the team com- 
pared the tensile strengths (in pounds) of 12 leaky seals and 12 good seals. From Figure 15.2, 
we see that leaky seals are strongly related to low tensile strengths. Based on this conclusion, they 
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Figure 15.2 Battery seal group comparison results. 
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reformulated the problem in terms of tensile strength. The tensile strength was measured on a sam- 
ple of 100 batteries selected from one week’s production. The data are stored in the file battery 
seal strength baseline and the results are shown in the histogram in the left panel of Figure 15.1. 
From the group comparison, the baseline investigation, and engineering knowledge, the team set 
the minimum acceptable seal strength at 320 pounds, which corresponds to increasing the cen- 
ter of the process output by about 60 pounds. The desired process histogram is shown in the 
right panel of Figure 15.1. At this point, the team did not attempt to determine if this shift in the 
process center would meet the initial project goal of reducing the leak rate to less than 0.5%. 

The team set out to find an adjuster. Based on engineering and process knowledge, they 
chose three candidates (fixed inputs) at two levels each. The further apart the levels, the 
more likely the experiment will detect an effect and the greater the risk of negative side 
effects. They planned a factorial experiment with eight runs. The candidates and levels are 
given in Table 15.1. 

 
 

Table 15.1   Heat seal experiment candidates and levels (existing 
process levels are indicated by *). 

Candidate Low level High level 

Melt temperature 750°F 800°F* 

Melt time 2.5 seconds* 3.1 seconds 

Elevator speed low high* 
 
 

In each of the eight experimental runs, five batteries were produced. The runs were 
conducted in random order. Treatment 7 corresponds to the existing process. The data are 
given in the file battery seal strength move center and in Table 15.2. There were no leaking 
seals in the 40 batteries produced in the experiment. 

 
 

Table 15.2   Treatments and seal strength for battery seal experiment. 
 

 
 

Treatment 

 
 

Order 
Melt 
temperature 

Melt 
time 

Elevator 
speed 

 
 

Seal strength 

1 7 Low Low Low 413, 505, 489, 452, 465 

2 6 Low High Low 468, 493, 484, 393, 423 

3 8 High Low Low 383, 368, 280, 377, 370 

4 4 High High Low 383, 365, 353, 389, 353 

5 1 Low Low High 440, 415, 483, 395, 433 

6 3 Low High High 466, 387, 505, 393, 456 

7* 5 High Low High 399, 294, 317, 300, 337 

8 2 High High High 373, 379, 383, 385, 345 
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Figure 15.3 Seal strength by treatment. 

 
In the analysis, we first plot the data by treatment as in Figure 15.3. We see, encouragingly, 

that many treatments have average strength greater than treatment 7, the current operating 
condition, and many meet the desired minimum of 320 pounds. 

To isolate possible adjusters, we use MINITAB to fit a full model with all possible main 
and interaction effects. Then we look at the Pareto plot of the effects in Figure 15.4. Only 
the effect for melt temperature is large. Also, because none of the interaction effects is 
large, we conclude that melt temperature is an adjuster. 

We can use the main effect plot for melt temperature, given in Figure 15.5, to assess 
quantitatively the effect of changing melt temperature. Decreasing the melt temperature by 
50°F increases the average seal strength by about 90 pounds. 
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Figure 15.4 Pareto chart of effects for battery seal experiment. 
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Figure 15.5   Main effect plot for melt temperature. 

 
 

We do not know from this two-level experiment if the effect of the adjuster is linear. 
The team decided to use a melt temperature of 770ºF, a little over halfway between the low 
and high levels in the experiment. They did not want to decrease the melt temperature too 
much for fear of creating other problems related to material flow. To validate the solution, 
they changed the melt temperature to 770˚ for one shift and carefully monitored the process 
for leaks and negative side effects. The results were very promising. Since the cost of the 
change was negligible, the team implemented the new melt temperature setting and moni- 
tored the process for two months. The leak rate was reduced to 0.6%. 

 
Engine Block Leaks (Cylinder Bore) 

In Chapter 6, we introduced a problem of leaking engine blocks with three distinct failure 
modes. The team found that the dominant cause of cylinder bore leaks was the occurrence 
of dip bumps on the barrel cores used to create the bores in the block when it was cast. Each 
sand core is dipped in core wash, a paintlike substance, to improve the surface finish of the 
casting. Dip bumps occurred when the core wash ran before drying. The dip bump score 
for each core was the total number of bumps divided by four, the number of barrels per 
core. The team reformulated the problem to reduce the average dip bump score and estab- 
lished a new baseline. They did not precisely quantify the relationship between the occur- 
rences of a cylinder bore leak and the dip bump score. The team assumed if they could 
reduce the average dip bump score to close to zero, then they would eliminate cylinder bore 
leakers. 

The team used a single operator to define and count dip bumps. They did not assess this 
simple measurement system but assumed that it would add little variation. The team 
decided not to search for a dominant cause of dip bumps. They felt strongly that dip bumps 
were inevitable with the current core wash. They decided to experiment with five core 
washes from different suppliers. They hoped to find a core wash that would reduce the 
average dip bump score to close to zero. 
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Figure 15.6   Box plots of dip bump score by core wash solution. 

 

 
In the experiment, for each core wash, 50 cores were processed on each of two days. 

There were 10 runs, two replicates of each treatment, and 50 repeats for each run. Within 
each day, the order of treatments was randomized. The dip bump score for each of 500 
cores was recorded. The data are given in the file engine block leaks move center. The cores 
from the experiment were recycled. Core wash A is the current wash. 

The experimental results are summarized in the Figure 15.6. There were virtually no 
dip bumps with core washes B and D. The team recommended changing the process to use 
core wash B since it was cheaper than D. 

During the validation of core wash B, the foundry scrapped a half shift worth of engine 
blocks and shut down the engine assembly line. This disastrous event occurred because, over 
the longer time frame used in the validation investigation, the new water-based core wash 
separated and failed to effectively coat the cores. The experiment to assess the different core 
washes was conducted over such a short time that the separation problem had not occurred. 
The team had not anticipated that continuous mixing was required with the new wash. 
Rather than changing the process to incorporate the necessary mixing, the team decided to 
look again at core wash D (very carefully this time), since it was similar in formulation to 
the original core wash. In the end, the foundry switched to core wash D and cylinder bore 
leaks were virtually eliminated. 

 
Differential Carrier Shrink Defect 

In the manufacture of a cast iron differential carrier casting, there was a problem with a 
shrink defect at a boss, a thick area of the casting. The defect was discovered at the drilling 
operation. The baseline defect rate was about 5%. We first discussed this problem in 
Chapter 3. 

For the purposes of process improvement, a single operator assessed the shrink defect 
on a scale of 0 to 4, where 0 was the best. Scores of 3 or 4 correspond to a defective casting. 
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The problem goal was to reduce the average defect score. To establish a baseline and 
to simultaneously assess the measurement system, the team selected a sample of 200 cast- 
ings from one day’s production. The operator scored each casting twice. The data are in the 
file differential carrier shrink defect baseline and are summarized in Table 15.3. 

 
Table 15.3   Boss shrink defect scores. 

 

 Second measurement 
 
 
 
 
 

First 
measurement 

 0 1 2 3 4 

0 105 5 0 0 0 

1 3 40 1 0 0 

2 0 3 30 1 0 

3 0 0 0 10 0 

4 0 0 0 0 2 

 
The operator was very consistent in scoring the castings, and the team judged the meas- 

urement system to be acceptable. The average score (of the first measurements) in this 
investigation was 0.75, and 12 out of the 200 castings were defective. The problem goal 
was to reduce the average score to close to 0, since then there would be almost no defective 
castings. 

The team took the risky decision not to search for a dominant cause. Instead, they 
adopted the Move the Process Center approach and planned an experiment. The team 
selected nine candidates as potential adjusters. These candidates included three iron 
chemistry levels (denoted A, B, and C), iron temperature (D), pouring time (E), concen- 
tration of in-mold alloy (F), two molding inputs from changing the dies that make the 
sand molds (G and H), and squeeze pressure (J). The team selected the low and high levels 
of each candidate using engineering judgment. We code the two levels of each candidate 
–1 and +1. 

To define a run of the experiment, the team planned to set the candidate levels and oper- 
ate the casting process for 40 minutes. From past experience with the process, they expected 
to see castings with the shrink defect within that time period. Within each run, they planned 
to select 20 castings and score them for shrink. They also planned to randomize the order of 
the runs. 

There are 29 = 512 possible candidate combinations or treatments. It was not feasible 
to carry out an experiment with this many treatments so the team decided to use a fractional 
factorial design with only 16 runs (see the chapter suppliment1). The 16 treatment combi- 
nations must be carefully selected from the 512 possibilities. We use MINITAB to make the 
best selection (see Appendix F). We give the experimental design and results in Table 15.4. 
The team conducted the experiment without incident and stored the data in the file 
differential carrier shrink defect move center. 
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Table 15.4 Experimental design and results for differential carrier experiment. 
 

 
 
 

Treatment 

 
 
 

Order 

Candidates Shrink defect score frequency  
Average 

Score A B C D E F G H J 0 1 2 3 4 

1 3 +1 –1 –1 +1 +1 +1 –1 –1 +1 7 5 6 2 0 1.15 

2 4 –1 +1 +1 +1 –1 +1 –1 –1 –1 5 7 6 2 0 1.25 

3 2 –1 +1 –1 –1 +1 +1 –1 +1 –1 1 7 8 3 1 1.80 

4 5 –1 –1 +1 –1 +1 +1 +1 –1 –1 6 10 4 0 0 0.90 

5 6 –1 –1 –1 –1 –1 –1 –1 –1 +1 4 7 7 2 0 1.35 

6 10 –1 –1 +1 +1 +1 –1 –1 +1 +1 8 11 1 0 0 0.65 

7 15 +1 +1 +1 –1 +1 –1 –1 –1 –1 0 5 6 9 0 2.20 

8 16 +1 +1 +1 +1 +1 +1 +1 +1 +1 4 8 7 1 0 1.25 

9 12 +1 +1 –1 +1 –1 –1 –1 +1 –1 1 9 7 3 0 1.60 

10 7 –1 +1 –1 +1 +1 –1 +1 –1 +1 7 10 3 0 0 0.80 

11 8 –1 –1 –1 +1 –1 +1 +1 +1 –1 12 8 0 0 0 0.40 

12 9 –1 +1 +1 –1 –1 –1 +1 +1 +1 4 7 7 2 0 1.35 

13 14 +1 –1 –1 –1 +1 –1 +1 +1 –1 4 7 5 3 1 1.50 

14 13 +1 +1 –1 –1 –1 +1 +1 –1 +1 1 8 6 5 0 1.75 

15 1 +1 –1 +1 –1 –1 +1 –1 +1 +1 1 8 6 4 1 1.80 

16 11 +1 –1 +1 +1 –1 –1 +1 –1 –1 6 9 5 0 0 0.95 
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In Table 15.4, we give the frequency of scores and the average score for the 20 castings 
in each run. We are looking for a treatment that gives a low average score. Here, due to the 
discreteness of the scores, a plot of individual casting scores versus treatment is not very 
informative. Instead, we look at the performance measure defined as the average score 
over each run. In general, a performance measure is a statistic calculated over all the repeats 
within each run to assess the performance of the process for that treatment. There are promising 
treatments, such as number 11, where the average score is small. 

From Table 15.4, we can see one important property of the selected design. For each 
candidate, 8 of the 16 runs have the level –1 and the other 8 have the level +1. Due to this 
balance, we can assess the main effect of any candidate by comparing the averages of these 
two sets of runs, as we did in Chapter 13. 

The price we pay for using a fractional design (rather than a full factorial design) is that 
we lose information about interactions. We say that certain effects are confounded, because we 
cannot estimate them separately. MINITAB produces a list of effects, called the alias struc- 
ture, that are confounded when we use MINITAB to generate the design. For the differential 
carrier experiment, the main effects and two input interactions that are confounded are: 

Alias Structure (up to order 2) 

I 
A + F*J 
B + G*J 
C + H*J 
D + E*J 
E + D*J 
F + A*J 
G  +  B*J 
J  +  A*F  +  B*G  +  C*H  +  D*E 
A*B  +  C*E  +  D*H  +  F*G 
A*C + B*E + D*G + F*H 
A*D + B*H + C*G + E*F 
A*E + B*C + D*F + G*H 
A*G + B*F + C*D + E*H 
A*H  +  B*D  +  C*F  +  E*G 

 
 

In the list, the main effects are labeled by a single letter and the interactions by pairs 
such as A*B. To determine the confounding, we see from the second line, for example, that 
the main effect of input A is confounded with the two-input interaction between F and J. As 
a consequence, if the average difference between the eight runs with A at level –1 and A at 
level +1 is large, the difference may be due to simultaneously changing the levels of inputs 
F and J or to changing the levels of input A. We cannot separate these two possibilities with 
the data from the experiment. Because of this confounding, we need to confirm any promising 
adjuster found in the experiment. Third- and higher-order interactions are also confounded 
with the given effects. MINITAB will provide the complete confounding (aliasing) struc- 
ture if desired. We call this experimental plan a resolution III design because some main 
effects are confounded with two-input interactions but not with other main effects. In a 
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resolution IV design, some main effects are confounded with three-input interactions but 
no two-input interactions; in a resolution V design, some main effects are confounded with 
four-input interactions but no three-input interactions. Since we assume that the higher the 
order of an interaction, the more likely it is to be negligible, we want a design with as high 
a resolution as possible. For a given number of candidates, MINITAB selects, by default, 
one of the fractional factorial designs with the highest possible resolution. 

The Pareto chart of the effects for the full model is given in Figure 15.7. We use the first 
effect in the list of confounded effects as the label for the string of confounded effects so 
that, for example, D corresponds to the combined effects of input D, the two-input interaction 
E*J, and other three-input and higher interactions not shown in the confounding list. We 
see in Figure 15.7 that effects for inputs A, B, D, and G are large relative to the others. If we 
assume that the two-input and higher-order interactions are negligible, then inputs A, B, D, 
and G are adjusters. 

We give the main effects plots for inputs A, B, D, and G in Figure 15.8. Since a lower 
average score is better, the desirable levels of the four inputs are –1 for inputs A and B and 
+1 for inputs D and G. The team decided to investigate further the consequences of chang- 
ing the levels of inputs A and B, the two iron chemistries, to the low level used in the 
experiment. 

To confirm the findings, the team set inputs A and B to their new levels, kept all other 
inputs at their current levels, and operated the process for four hours. Of the 3108 castings 
produced, only 12 were scrapped for shrink defect at machining. This scrap rate of 0.38% 
was a substantial improvement over the original rate of 5%. There were no side effects, so 
the team adopted the proposed process change. 
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Figure 15.7 Pareto chart of the effects for piston shrink defect experiment. 
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Figure 15.8 Main effects of significant inputs for shrink defect experiment. 

 
 

 
Move Process Center Experiment Summary 

 
Use engineering judgment to select candidates as potential adjusters. 

 

Question 

Does changing any of the candidates move the process center substantially? 
  

Plan 
 

• Select a study population where we expect to see the full extent of variation. 

• Choose two levels for each candidate as extreme as is feasible. 

• Define a run for the experiment. If the output is binary, a run must contain many repeats. 

• Choose a design with at least eight runs to specify the treatments. For: 

–Three or fewer candidates, use a full factorial design 

–Four or more candidates, select a fractional factorial design with at least resolution III 

• Spread the runs across the study population. Randomize the order as much as is feasible. 

• Make everyone potentially impacted aware of the plan. 
  

Data  
• Carry out the experiment. For a: 

–Continuous output, record the output value, the levels of the candidates, treatment num- 
ber, and run order, one row for each repeat 

–Binary output, record the proportion of defectives, the levels of the candidates, treatment 
number, and run order for each run 
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Analysis 
 

• Plot the output values for each treatment. Look for promising treatments. 

• If there are two or more candidates, use a full model and create a Pareto plot of the effects. 

• Check for possible confounding in the important effects if the design is a fractional factorial. 
 

Conclusion 
 

• A candidate with a large effect is an adjuster. 

• For fractional factorial designs, verify an adjuster, if necessary, to break confusion due to 
confounded effects. 

 
 
 

15.2 ASSESSING AND PLANNING A PROCESS 
CENTER ADJUSTMENT 

To successfully implement Move the Process Center we must: 
• Identify one or more adjusters, fixed inputs that we can change to move the 

process center. 

• Identify the best level(s) for the adjuster(s). 

• Check that the adjustment does not produce substantive negative side effects. 

• Estimate the costs of changing the adjuster and ongoing operating costs. 

• Estimate the benefit of the adjustment. 
If we can accomplish all of these tasks and the benefits outweigh the costs, we adopt the 
Move the Process Center approach and proceed to the validation stage of the algorithm. 

There is some risk that no adjuster will be found. Experiments, such as that used in the 
differential carrier shrink defect example, can be complex and expensive. In planning such 
experiments, the candidates and their levels should be selected with great care. There is little 
value in including an adjuster that is very expensive to change or, if changed, increases 
operating costs substantially. 

Once an adjuster has been identified, further experimentation may be required to deter- 
mine the appropriate level of the adjuster to move the process center to the desired value. In the 
battery seal failure experiment, melt temperature was found to be an adjuster. The average seal 
strength was 356 pounds at 800° and 447 pounds at 750°. A change of 50° in melt temperature 
produces a change of about 90 pounds in average seal strength. Since the goal was to increase 
average seal strength by about 60 pounds, the team selected 770° as the new set point for the 
melt temperature. They assumed a roughly linear relationship between the melt temperature 
and the seal strength. Alternately, the team could have conducted a second experiment with 
several levels of melt temperature between 750° and 800° in order to determine the relation- 
ship more precisely. Precisely quantifying the adjuster/output relationship is more important if 
we make repeated adjustments of different sizes, as in feedforward or feedback control. 
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When changing the process center we need to watch carefully for negative side effects. 
In the core strength example introduced in Chapter 1, the team found they could eliminate 
core breakage by increasing core strength. They discovered an adjuster, the amount of resin 
in the sand mix, which they used to increase the average strength. However, the stronger 
cores led to more casting defects and the approach was abandoned. We may be able to 
avoid undesirable side effects by using two or more adjusters simultaneously rather than 
one adjuster as in the battery seal failure and engine block leaks examples. This is a good 
reason for searching for several adjusters simultaneously. 

For off-target process center problems, we can see the expected benefit of changing the 
process center using the histogram from the baseline investigation. Based on the problem 
goal and baseline, we know how far we want to move the process center and the expected 
benefits of such a move. We also need to assess the costs of changing the adjuster and the 
operating costs at the new level. 

In some problems the two approaches, Move the Process Center and Make the Process 
Robust, are identical. The differential carrier shrink defect problem is a good example. 
Whatever the cause of the shrink defect, the change in the fixed chemistry inputs made the 
process more robust to the cause. 

In multistream processes, if we find that the process centers vary from stream to 
stream, we can reduce the overall variation by moving the centers of each stream to a com- 
mon target, as shown in Figure 15.9. In the left panel, we show box plots of the output by 
stream and overall. In the right panel, we show the same plots after we (roughly) align the 
substream centers. Aligning the substream centers results in a significant reduction in the 
overall output variation. 

In some circumstances, an output center may drift over time. In that case, a one-time 
adjustment of the process center will not solve the problem over the long term. We may 
need to use another variation reduction approach, such as feedback control. 
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Figure 15.9 The effect of aligning substream centers on output variation. 
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Key 
Points 

 

• To move the process center, we need to find one or more adjusters, normally 
fixed inputs. We change the settings of the adjusters to move the output center. 

 

 
 

Process 
 
 

• We use an experimental plan, a full or fractional factorial design, to investigate 
one or more fixed inputs (candidates) as possible adjusters. 

• For processes with multiple streams, we can align the centers of the streams 
with separate adjustments and hence reduce the overall variation in the process. 

 
 
 
 
 

Endnote (see the Chapter 15 Supplement on the CD-ROM) 

1. Fractional factorial designs are powerful experimental methods for investigating the effects of 
a large number of inputs simultaneously. In the supplement, we provide an introduction to these 
designs and references to further work. We will use these designs to determine the knowledge 
required to implement several of the variation reduction approaches. 

 
 
 
 
 

Exercises are included on the accompanying CD-ROM 
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16 
Desensitizing a Process to Variation in 

a Dominant Cause 
 
 
 

Efficiency is doing things right; effectiveness is doing right things. 

—Peter F. Drucker 
 
 
 

he goal of desensitization is to find and change fixed inputs that flatten the relationship 
between the output characteristic and the dominant cause (see Figure 16.1). That is, we 
find an interaction that we exploit to desensitize the process output to changes in the 1 

dominant cause. To explore desensitization, we choose a number of fixed inputs to investi- 
gate, based on knowledge of the dominant cause and the process. We use an experimental 
plan to determine if these candidates and their new levels will make the process less sensitive 
to variation in the dominant cause. 

With this approach we do not address the dominant cause directly. We continue to live 
with its variation. By changing the relationship between the cause and the output, we 
reduce the effect of the cause. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dominant cause Dominant cause 

 
Figure 16.1 Original (left) and new (right) relationship between the dominant cause and 

output characteristic. 
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The only requirement for desensitization is to find new settings of the candidates that 
make the output less sensitive to variation in the dominant cause. 

The costs of desensitization include: 

• An experiment to find the new process settings that make the process less 
sensitive to variation in the dominant cause 

• A one-time change to the process settings 

• The ongoing operation of the process with the new settings 
There is no information about whether this approach will be feasible until the experimental 

investigation is complete. This is a drawback, since the cost of the experimentation may be 
high and the returns uncertain. The benefit can be assessed using the relationship between the 
cause and the output. If we could totally eliminate the effect of the dominant cause, the max- 
imum benefit is given by the residual variation in the output due to all other causes. 

 
 
16.1 EXAMPLES OF DESENSITIZATION 

We illustrate the approach with a series of examples in which the complexity of the exper- 
imental plan increases. 

 
Engine Block Porosity 

We discussed the problem formulation and the search for the dominant cause of excess 
porosity in a cast-iron engine block in chapters 6, 10, and 13. The team identified low pouring 
temperature as the dominant cause. During planned and unplanned work stoppages, iron 
that remained in the pouring ladle cooled since there was no external heat source. In normal 
production, this was not a problem because the pouring ladle was frequently replenished 
with fresh hot iron. The team could not address this cause directly. Eliminating or stag- 
gering breaks was not possible due to employee resistance, and adding temperature control 
to the pouring ladles was too costly. They decided to explore desensitization as a possible 
solution. 

The first step was to choose the candidates, fixed inputs that can be changed and might 
desensitize the process to variation in pouring temperature. Porosity occurs when gases pro- 
duced during pouring are trapped in the casting. If the pouring temperature is too low, the 
iron may harden before all the gas can escape. The team selected core wash and core sand 
composition as candidates. Cores, set in the mold to create spaces in the casting, are dipped 
in core wash to produce a better surface finish. The cores are made from resins and sand. 
Both the core wash and the resins generate gas during the pouring process. 

The team decided to investigate one new core wash and a single reformulation of the 
core sand mixture in a factorial experiment. Each candidate had two levels, regular and 
alternative. There were four treatments as shown in Table 16.1. 

To assess the sensitivity of the process to pouring temperature for each treatment, the 
team used the knowledge that the pouring temperature varied over its full range around the lunch 
break. For each treatment, three engine blocks were cast just before lunch (high pouring 
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Table 16.1   Treatments for the engine block 
porosity desensitization experiment. 

Treatment Sand Core wash 

1 Regular Regular 

2 Regular Alternative 

3 Alternative Regular 

4 Alternative Alternative 

 
temperature) and another three blocks just after lunch (low pouring temperature). The 
experiment was replicated over three days so that a total of 72 blocks were measured for 
porosity. The 12 blocks before and after lunch were divided into three groups of four. 
Within each group, the team randomized the order of the four treatments. Since temperature 
increased steadily after lunch, each treatment saw roughly the same range of temperatures. 
The team managed the randomization easily because the treatments only affected the cores. The 
data are given in the file engine block porosity desensitization. 

We start the analysis with a plot of porosity versus treatment number with different plot- 
ting symbols for the high and low temperatures, as shown in Figure 16.2. For any treatment, 
we can see if there is substantially less porosity than in the current process, here given by 
Treatment 1. All three new treatments are a large improvement over the existing process 
with smaller average porosity and less variation as the pouring temperature changes. 

The team decided to investigate the new core wash further to ensure that there were no 
side effects such as an increase in other casting defects. There was no cost to this change. 
The alternative core wash was eventually adopted and the scrap rate due to porosity 
decreased from about 4% to less than 1%. 

In this example, the team designed a full factorial experiment and drew their conclu- 
sions from a simple plot. We give three more examples to illustrate some complications that 
can arise in a desensitization experiment. 
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Figure 16.2 Porosity by treatment for high and low pouring temperatures. 
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Oil Pan Scrap 
 

The baseline oil pan scrap rate was 8%. Applying the method of elimination, the team dis- 
covered that a dominant cause of scrap was the amount of lubricant applied to the blanks 
prior to the draw press. A roll coater with two steel cylinders applied the lubricant. There 
were no controls on the roll coater and no ongoing measurement of the lubricant amount. 

During a verification experiment, the team used a visual five-point score for the amount 
of oil applied. They specially prepared 80 blanks with lubricant amounts at each of the five 
levels. The team could control the dominant cause during the experiment but not in normal 
production. To verify the cause, the team stamped the 80 blanks for each oil level. We see 
from Figure 16.3 that the scrap rate increased markedly as the lubricant score increased. 

There was no obvious cost-effective way to control the amount of lubricant applied to 
the blanks, so the team decided to try to desensitize the process. There was a lot of uncer- 
tainty about whether this approach would be effective, but they decided that it was worth the 
cost of the investigation in the hopes of avoiding a solution with high capital cost. 

Based on knowledge of the cause, the team chose three candidates for the desensitiza- 
tion experiment: lubricant supplier, die temperature, and binder force. After consultation, 
three lubricant suppliers (the current supplier is labeled A and two other suppliers B and C) 
provided the lubricant they judged the best suited for the application. Supplier A suggested 
the lubricant in current use. The team selected the two levels for the other candidates using 
engineering judgment. They decided to use only the two extreme levels 1 and 5 for the 
amount of oil on the blanks, the dominant cause. 

The team defined a run to be the consecutive stamping of 80 blanks as in the verification 
experiment. Since the output was binary, each run required sufficient repeats so that some 
defectives were produced. The team used the scrap rate for each run as a performance meas- 
ure. The experiment had 24 runs. There were 12 treatments defined by the levels of the three 
candidates and two runs per treatment, one for each level of the lubricant score. With this 
plan, each treatment would see the full range of variation in the dominant cause. 
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Figure 16.3 Scrap rate by lubricant score. 
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Table 16.2   Candidate levels and scrap rates for low and high level of lubricant amount. 
 

    Scrap rate for 
 
 

Treatment 

 
 

Run order 
Lubricant 
supplier 

Die 
temperature 

Binder 
force 

 Lubricant 
Score 1 

Lubricant 
Score 5 

1 3 A Low Low  0.07 0.15 

2 5 A Low High  0.14 0.16 

3 10 A High Low  0.06 0.11 

4 7 A High High  0.15 0.24 

5 4 B Low Low  0.04 0.01 

6 1 B Low High  0.10 0.11 

7 8 B High Low  0.03 0.05 

8 12 B High High  0.09 0.14 

9 6 C Low Low  0.03 0.05 

10 2 C Low High  0.04 0.08 

11 11 C High Low  0.04 0.04 

12 9 C High High  0.03 0.07 

 
Since die temperature was difficult to change, all runs with the low temperature were 

conducted first. Within the low-temperature runs, the six treatments were applied in random 
order. Once they set the levels of the candidates, the team stamped the two sets of 80 blanks, 
one set with oil level 5 and one with oil level 1. 

We give the experimental plan, including the run order, and the results in Table 16.2 
and in the file oil pan scrap desensitization. 
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Figure 16.4 Scrap rate for low and high level of lubricant amount versus treatment 

(dashed horizontal line gives the baseline scrap rate). 
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Figure 16.5   Interaction plots for oil pan scrap desensitization experiment. 
 

 
We start the analysis by plotting the scrap rate by treatment with different plotting symbols 

for the two lubricant scores. In Figure 16.4, we see that there are promising treatments with 
low scrap rates for both levels of the dominant cause. 

We can look at the effects in more detail using the interaction plots between the candi- 
dates and the lubricant score. In Figure 16.5, we see that the scrap rate is: 

• Less sensitive to changes in the lubricant amount if the die temperature is low 

• Substantially lower with binder force at the low level for both lubricant scores 

• Much lower and less sensitive to changes in lubricant amount for lubricant C 

Since lubricant C looks so promising, we next consider the interactions between binder force 
and die temperature by lubricant amount for supplier C only. We subset the data set in 
MINITAB (see Appendix A). From the interaction plots in Figure 16.6, we conclude that low 
binder force is the preferred setting for lubricant C to reduce the scrap rate. Die temperature 
has little effect. 

During the investigation, the team measured other important outputs to make sure that 
changing the process settings would not result in other problems. They found that lubricant 
C was also better than the original lubricant in terms of steel flow at the deep end of the 
pan. The team decided to change to the lubricant from supplier C. After the change, the 
long run scrap rate was reduced to about 3%. There was a small increase in cost that was 
far outweighed by the savings in scrap costs. 
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Figure 16.6 Interaction plots of die temperature and binder force by lubricant amount 

(supplier C only). 
 

Refrigerator Frost Buildup 

The manufacturer of a frost-free refrigerator, designed for temperate climates, expanded its 
market to several tropical countries. Almost immediately, there were many customer com- 
plaints about the buildup of frost inside the refrigerator. These complaints had been non- 
existent in the traditional market. Management feared that the opportunity for market 
expansion would be lost. They formed a team to reduce the number of complaints. We 
discussed this example previously in chapters 1, 3, and 8. 

As a first step, the team replaced field measurements by the temperature of the refrig- 
erator cooling plate. They verified that high temperature on the cooling plate led to a 
buildup of frost under certain conditions. The team set a goal to keep the cooling plate 
temperature less than 1°C. There was no baseline investigation for either the original 
problem or for the problem as reformulated in terms of cooling plate temperature. Either 
investigation would have been very expensive. 

Because the problem did not occur in temperate climates, the team knew that the domi- 
nant cause must relate to differences in usage or ambient conditions between the tropical and 
the traditional market. Through further discussion and interviews with field representatives, 
they decided that the dominant cause of temperature variation on the cooling plate was ambi- 
ent temperature and relative humidity in combination with the frequency of door openings. 

The team could not address the dominant cause directly since it was not under the 
control of the manufacturer. They decided to pursue desensitization. The goal was to find a 
refrigerator design that would maintain a consistent low temperature on the cooling plate under 
varying conditions defined by ambient temperature, relative humidity, and number of door 
openings per hour. 

The team considered four fixed inputs, D1 to D4, related to the refrigerator design. 
They selected two levels, original and new, for each candidate, based on engineering 
knowledge. There were 16 possible prototypes (treatments) using the levels of the four can- 
didates. Due to the high cost of prototypes, the team decided to use a fractional factorial 
design and build only 8 of the 16 possible combinations. The team used MINITAB to select 
the design. See the supplement to Chapter 15 for more detail on fractional factorial designs. 
We show the selected treatments in Table 16.3. 
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Table 16.3   Eight-run fractional factorial refrigerator desensitization 
experiment. 

Treatment D1 D2 D3 D4 

1 New New New New 

2 New New Original Original 

3 New Original New Original 

4 New Original Original New 

5 Original New New Original 

6 Original New Original New 

7 Original Original New New 

8 Original Original Original Original 
 

 

In this resolution III design, the main effect of input D4 is confounded with the three-input 
interaction of D1, D2, and D3. Thus pairs of two input interactions such as D1*D2 and D3*D4 
are also confounded. 

The team set up the testing laboratory with two sets of environmental conditions: 

Normal Conditions to mimic use in temperate climate 

Extreme Conditions to match the worst anticipated usage conditions with high 
temperature, high humidity, and frequent door openings 

For each prototype listed in Table 16.3, the team planned two runs in the laboratory, 
one at normal and one at extreme environmental conditions. We call this a crossed design 
since we use both levels of the dominant cause for each of the treatments. There are 16 
combinations of the 5 inputs (D1 to D4 and environment) out of the 32 possible treatments. 
We use MINITAB to determine the confounding structure for this fractional design.2 We 
assume third- and higher-order interactions are negligible, so we attribute any large differ- 
ences to main effects and two-input interactions. We reproduce the confounding structure 
with any effects involving three or more of the fixed inputs (candidates) erased. 

 
 

I 
D1 
D2 
D3 
D4 
environment 
D1*D2  +  D3*D4 
D1*D3  +  D2*D4 
D1*D4  +  D2*D3 
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D1*environment 
D2*environment 
D3*environment 
D4*environment 
D1*D2*environment + D3*D4*environment 
D1*D3*environment + D2*D4*environment 
D1*D4*environment + D2*D3*environment  

 
 

The purpose of the desensitization experiment is to isolate useful interactions between 
the dominant cause (environment) and one of the candidates (D1 to D4). From the list of 
confounded effects, we see that the interactions between the four candidates D1 to D4 and 
the environment are in separate lines and, hence, can be estimated separately. These inter- 
actions are the key to desensitizing the cooling plate temperature to changes in the usage 
conditions. On the other hand, we cannot separate the joint effects D1*D2 and D3*D4 with 
the environment. 

After 30 minutes of cycling, the temperature of the cooling plate was measured. Random- 
ization of the run order was not feasible for time and cost reasons. All eight refrigerators were 
placed in a special testing room and subjected to one of the environmental conditions simulta- 
neously. This lack of randomization was not a major risk here since all refrigerators are subject 
to the same environmental conditions. The complete experimental plan and the data are given 
in Table 16.4. The data are stored in the file refrigerator frost buildup desensitization with one 
row for each temperature measurement and columns indicating the values of D1–D4 and the 
environmental conditions. 

We start the analysis by plotting the cooling plate temperature versus treatment with a 
separate plotting symbol for the two levels of environment. From Figure 16.7, we see that 
there are several promising treatments, especially treatment 6. 

 
 

Table 16.4   Plan and data for refrigerator frost buildup desensitization experiment. 
 

  Environmental conditions 

Treatment D1 D2 D3 D4  Low (normal) High (extreme) 

1 New New New New  0.7 2.1 

2 New New Original Original  2.9 4.8 

3 New Original New Original  2.4 9.6 

4 New Original Original New  3.8 5.9 

5 Original New New Original  1.9 4.0 

6 Original New Original New  –0.2 0.1 

7 Original Original New New  –0.1 3.5 

8 Original Original Original Original  0.2 7.2 
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Figure 16.7 Temperature on cooling plate by treatment (different symbols represent 

output values for different environmental conditions). 
 

 

In Figure 16.8, we look at the interaction plots for each candidate versus the environ- 
mental cause. We hope to find an interaction that gives consistently low cooling plate 
temperatures for both levels of the environment, as seen in treatment 6. 

Using Figure 16.8, the team concluded that they should change D2 and D4 to their 
new levels. However, changing to the new level of D4 added significant cost. As a result, the 
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Figure 16.8 Interaction plots of candidates and the environment cause output in cooling 

plate temperature. 
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team decided to investigate how much the cooling plate temperature variation could be 
reduced if only D2 was changed to its new level. This treatment was not included in the 
original fractional design. When they produced a prototype with only D2 changed and sub- 
jected it to both levels of the environmental cause, they found that changing this input alone 
did not sufficiently reduce the cooling plate temperature and its variation as the environ- 
mental input was changed. 

Despite the added cost, the team recommended adopting a refrigerator design with 
both D2 and D4 changed to their new levels. After the change, the frequency of complaints 
about frost buildup from the tropical market was substantially reduced. 

 
 

Eddy Current 
 

In a process that produced castings later machined into brake rotors, there was 100% 
inspection of hardness using a measurement system based on eddy currents. This system 
was fast and nondestructive. Despite the 100% inspection, there were frequent complaints 
from the customer, a machining operation, about castings out-of-specification with respect 
to hardness. The customer used the Brinell method to measure hardness, a standard proce- 
dure that is partially destructive and time consuming, not suitable for 100% inspection. 

There was a high reject rate at the 100% eddy current inspection station. The operators 
measured all rejected castings a second time. The plant shipped castings that passed at least 
one test and scrapped those that failed both tests. 

Management assigned a team to reduce scrap costs and customer complaints by reducing 
casting hardness variation. To establish a baseline, each day for one week, the team col- 
lected a haphazard sample of 100 first-time eddy current measurements for a total of 500 
hardness measurements. The data are available in the file eddy current baseline and are 
plotted by day in Figure 16.9. The hardness specification is 4.3 to 4.7. The baseline standard 
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Figure 16.9 Box plots of eddy current hardness measurements by day (dashed horizontal 

lines give the specification limits). 
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deviation is 0.1365 and the full extent of hardness variation is 4.52 ± 3*0.14 (average ±3 
standard deviation), or about 4.1 to 4.9. 

The team assessed the measurement system using a standard gage R&R procedure as 
described in the supplement to Chapter 7. The measurement system standard deviation was 
0.021, so it appeared the measurement system was adequate to proceed to the next stage of 
the algorithm. 

Because of the past complaints from their customer, the team also carried out an inves- 
tigation to compare the eddy current and Brinell hardness measurement systems. They 
selected 30 castings with widely varying eddy current measurements, then tagged and 
shipped these castings to the customer. The customer measured the Brinell hardness for 
each casting. The data are plotted in Figure 16.10, and given in the file eddy current Brinell 
measurement. 

The real problem is now apparent. There is poor correlation between the two measure- 
ment systems. Although the earlier gage R&R investigation showed that the eddy current 
system was repeatable, for any set of castings with the same Brinell hardness, the eddy 
current system gave widely varying values. The team reformulated the problem to improve 
the correlation between the two measurement systems. Said in another way, the team decided 
to reduce the variation in eddy current measurements among castings with the same Brinell 
hardness. 

The team discovered that day-to-day fluctuations in iron chemistry and the level of dirt 
on the castings were dominant causes of the variation of the eddy current measurement of 
castings with the same Brinell hardness. They did not look for a more specific cause in the 
chemistry family. Castings were cleaned by shot blasting. The level of cleaning varied 
since the shot blast machine did not run using a first-in, first-out protocol. The cleaning 
times ranged from 5 to 19 minutes. 

In regular production, iron chemistry was expensive to control, and it was difficult to 
remove all the dirt from the casting before measurement. As a result, the team decided to 
look for a way to run the eddy current measurement system that was less sensitive to vary- 
ing levels of dirt and iron chemistry. 
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Figure 16.10 Scatter plot of eddy current versus Brinell hardness measurements. 
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Table 16.5   Candidate levels for eddy current measurement 
experiment. 

Candidate input Low level High level 
Frequency 200 350 

Probe temperature 35 65 

Gain 30 40 
 
 

For the desensitization experiment, the team chose three candidates corresponding to 
settings on the eddy current system. For each candidate they selected high and low levels 
on either side of the current settings. The team planned a full factorial with eight treatments 
using the levels given in Table 16.5. 

To ensure that each treatment was assessed under the extreme levels of the two dominant 
causes, the team selected 16 castings from each of two days’ production. Each casting was 
cleaned for 5 minutes, measured with the eddy current system, cleaned for another 14 minutes, 
and then measured again. The team measured every casting using all eight treatments at both 
points in the cleaning cycle. Finally they measured the Brinell hardness of each casting at two 
different positions on the casting. The team knew that the Brinell hardness measurements had 
little measurement variation relative to the variation in the eddy current machine. In the analy- 
sis, they used the average of the two Brinell values as the true hardness of the casting. 

The team hoped that the two days would represent the day-to-day variation in iron 
chemistry. This was a risky decision. With only two days, the full day-to-day variation in 
chemistry might not be captured. If the team had found the specific cause within the chemistry 
family, they could have more easily ensured that each treatment was subject to the full 
range of the dominant cause. We give the data from the experiment in the file eddy current 
desensitization. There are 16 eddy current measurements and the average Brinell reading 
for each of 32 castings. 

The analysis of this experiment is complicated. The goal in the analysis is to find a com- 
bination of levels for the candidates that yields a strong relationship between the Brinell 
hardness values and the values given by the eddy current system, consistently over the four 
combinations of the levels of the dominant causes. We do not worry about measurement 
bias, since if the bias is consistent it can be easily removed. 

In the analysis, for each of the eight treatments we plot the hardness as measured by the 
eddy current system versus the (average) Brinell hardness for all four combinations of the 
dominant causes. For example, in Figure 16.11, we show the plot for the treatment fre- 
quency = 200, temperature = 35, and gain = 30. This plot is typical of all the eight treat- 
ments. We see from the Figure 16.11 that there is a weak relationship between the two 
methods of measurement. For a given Brinell hardness, there is large variation in the eddy 
current measurements. 

The experiment failed to find settings of the candidates that make the eddy current 
measurement system less sensitive to changes in chemistry and dirt. In all cases, there was 
no relationship that could be used to predict the Brinell hardness from the eddy current 
measurements. Had one or more of the treatments shown promise, the team could have 
conducted a more formal analysis as discussed in the chapter supplement.3 
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Figure 16.11 Plot of eddy current versus Brinell hardness for freq. = 200, temp. = 35, and 

gain = 30. 
 
 

In the end, the team concluded that the experiment was not a failure. They had shown 
that the eddy current system did not work well and could not be easily improved. There was 
little value in the 100% inspection. By removing the eddy current system, the foundry was 
forced to concentrate on reducing variation in the process instead of relying on imperfect 
100% inspection. 

 
 

 
Desensitization Experiment Summary 

 
Select candidates and levels based on knowledge of the process and the dominant cause. 

 
Question 

Which combination, if any, of the candidate levels results in a process less sensitive to vari- 
ation in the dominant cause? 

 
Plan 

 
• Select a design for the candidates. For: 

–Three or fewer candidates, use a full factorial design 

–Four or more candidates, use a fractional factorial design with resolution III or higher 

• Define a treatment number for each combination of the candidates. 

• Select two levels for the dominant cause at the extremes of its normal range. 

• Use a crossed design where, for each treatment, there are runs for both levels of the dominant 
cause. 

• Define a run of the experiment including treatment assignment and the number of repeats. 



Chapter Sixteen: Desensitizing a Process 255 
 

 
 
 

• Randomize the order of the runs as much as is feasible. 

• Make everyone potentially impacted aware of the plan. 
 

Data 

Carry out the experiment. Record the output value, the levels for candidates, the level of the 
dominant cause, treatment number, and run order, one row for each repeat. 

 
Analysis 

 
• Plot the output for each treatment number. Use a different plotting symbol for the two levels 

of the dominant cause. Look for promising treatments. 

• Construct all cause by candidate interaction plots. 
 

Conclusion 

Examine the plots to determine the levels of the candidates (process settings) that make the 
output less sensitive to variation in the dominant cause. 

 
 
 
16.2 ASSESSING AND PLANNING 

PROCESS DESENSITIZATION 

To successfully implement process desensitization, we must: 

• Identify new process settings (that is, fixed inputs and their levels) to make the 
process less sensitive to changes in the dominant cause. 

• Move the new process center if not close to the target. 

• Check that the change of settings does not produce substantive negative side 
effects. 

• Estimate the costs of changing the settings and the change in ongoing 
operating costs. 

• Estimate the benefit of the process change. 

If we can accomplish all these tasks, and the benefits outweigh the costs, we proceed to the 
validation stage of the algorithm. 

In most applications, there is a degree of uncertainty in the choice of candidates. If the 
experiment fails to find settings that reduce the sensitivity, we may consider other fixed 
inputs or different levels of the current candidates before we abandon the approach. 

Sometimes we may have only partial knowledge of the dominant cause, as in the refrig- 
erator frost buildup example. There, the team did not isolate the dominant cause among 
ambient temperature, humidity, and usage conditions. In other cases, there may be more 
than one dominant cause. Then, for the desensitization experiment, we recommend defining 
a composite cause with two levels that corresponds to the extremes of the identified causes. 
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The dominant cause varies in normal operation of the process. During a desensitization 
experiment, however, we need to hold the cause fixed at its low or high level for a run of 
the experiment. If this is not possible, we may need to resort to a robustness experiment as 
described in Chapter 19. 

We strongly recommend the crossed design to ensure that all interactions between the 
individual candidates and the dominant cause are separately estimable, even if a fractional 
design is used for the candidates. 

In many instances, we choose not to completely randomize the order of the runs. In the 
refrigerator example, eight prototypes were built and then simultaneously tested under the 
two levels of the (composite) dominant cause. Because of high cost, it was not feasible to 
randomize the order in which each refrigerator was exposed to each level of the cause. 

There are some special considerations when planning a desensitization experiment for 
binary output. There must be enough repeats in each run so that some defectives occur on 
at least half the runs in the experiment. Otherwise the experiment will provide little useful 
information. See tables in Bisgaard and Fuller (1995a, 1995b, and 1996) for some guidance 
concerning the sample sizes necessary. The analysis of an experiment with a binary output 
can be based on the proportion defect within each run, as in the oil pan scrap example. 

We start the analysis of a desensitization experiment with a plot of the individual output 
values by treatment number, as in Figure 16.2. We use a different plotting symbol for each 
level of the dominant cause. For complex problems such as the eddy current measurement 
system, we use scatter plots or other graphical summaries to visually characterize the per- 
formance of the process for each treatment. From these summaries, we can assess if desen- 
sitization is feasible. In a full factorial experiment, if none of the treatments are promising, 
we cannot desensitize the process using the selected levels of the candidates. If we have a 
fractional design, or if one or more treatments appear promising, we look at interaction plots 
between the individual candidates and the cause as in Figure 16.5. 

We may find process settings that are less sensitive to variation in the dominant cause, but 
that result in an undesirable shift of the process center or some other side effect. In this case, we 
may look for an adjuster to move the center (see Chapter 15) or we may formulate a new prob- 
lem to deal with the side effect. In the crossbar dimension example discussed in Chapter 12, bar- 
rel temperature was identified as a dominant cause. The team found that increasing the set point 
for barrel temperature (but not controlling the variation) increased the average size but substan- 
tially reduced the variation in the crossbar dimension. They then needed to move the process 
center and also solve a new problem called burns, a visual defect that occurred on some parts 
molded with the higher barrel temperature. See the exercises for chapters 16 and 18. 

We recommend experiments with only two levels for each candidate. If we are successful 
in finding a candidate that desensitizes the process, we may optimize using a follow-up 
experiment with the identified candidate at several levels and the dominant cause at two 
levels. If a candidate is categorical, such as the supplier in the oil pan scrap example, we 
may use more than two levels in the desensitization experiment. 

We have seen many teams proceed directly to the desensitization approach without first 
identifying a dominant cause. They then conduct an experiment where they change both 
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candidates and suspects. In this way, they hope to identify a dominant cause and desensitize 
the process at the same time. This is a poor strategy. The experiment will be large and com- 
plex since there is little knowledge about which varying input, if any, is a dominant cause. 
There is also little information to help select the fixed inputs as candidates. It is more effective, 
both in terms of cost and the likelihood of finding a solution, to search first for a dominant 
cause (or at least clues about the dominant cause family) using the method of elimination 
with observational investigations, and then to consider a desensitization experiment. 

We sometimes analyze the results of desensitization experiments using statistical mod- 
els. Model building is an advanced topic that we do not cover here. See experimental 
design references such as Montgomery (2001) and Wu and Hamada (2000). Additional 
analysis using models may be necessary if we wish to predict the performance for candi- 
date levels not used in the experiment. 

The idea of desensitizing a process to a dominant cause was popularized by Taguchi 
(1985, 1986). He calls a suspect a noise factor. Taguchi (1985) cites several examples, 
including the famous Ina tile case. In other examples, Taguchi proceeds without knowledge 
of a dominant cause. This corresponds to the robustness approach described in Chapter 19. 
We provide a more detailed discussion of the designs and analysis suggested by Taguchi in 
the supplement to Chapter 19. 

 
 

Key 
Points 

 

• A desensitized process is one that is less sensitive (in terms of output variation) 
to changes in an identified dominant cause. 

 
 

Dominant 
cause 

 
Process 

 
Output 

 
• To find process settings that desensitize the process, we conduct an experiment 

with one or more candidates. We expose each combination of candidates in the 
experiment to the full range of the known dominant cause to identify good treat- 
ments. 

• Within each run of the desensitization experiment, we must be able to control 
the level of the dominant cause that normally varies. 

• Desensitizing a process requires a one-time change to the product design, 
process design, or the process control plan. 
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Endnotes (see the Chapter 16 Supplement on the CD-ROM) 

1. In the supplement we show how process desensitization exploits a special type of interaction 
between the dominant cause and one or more of the candidates. 

2. The supplement provides more details on crossed fractional factorial experiments used in 
desensitization experiments and how to determine the confounding structure. 

3. In the eddy current example, we concluded from a series of plots that none of the treatments 
was helpful in making the measurement process less sensitive to dirt and chemistry variation. 
In the supplement, we consider a formal analysis, useful if one or more of the treatments had 
shown promise. 

 
 
 
 
 
 
 

Exercises are included on the accompanying CD-ROM 
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17 
Feedforward Control Based 

on a Dominant Cause 
 
 
 

To improve is to change, to succeed is to change often. 

—Winston Churchill, 1874–1965 
 
 
 

e use a feedforward controller to reduce the effect of an identified dominant cause 
of variation. The basic idea is to measure the cause and then predict the output 
value. If the predicted output is not close to the target value, we make an adjust- 

ment to the process to compensate for the predicted deviation. Figure 17.1 is a schematic of 
the implementation. 

For feedforward control to be effective, the requirements are: 

• A known relationship between the output and the dominant cause 

• A reliable system to measure the dominant cause 

• A timely way to adjust the process center 
 
 
 
 
 

 
Measure 
dominant 

cause 

No adjustment 
required 

 
 
 

Rest of process 

Adjustment 
required 

 
Figure 17.1 Feedforward control schematic. 
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The potential costs of feedforward control include: 

• An investigation to quantify the relationship between the output and the 
dominant cause 

• An experiment to find an adjuster, if not already known 

• The ongoing costs of measuring the cause and making the compensating 
adjustment 

We can assess the potential benefit of using feedforward control with the knowledge of 
the dominant cause and the relationship between the cause and the output. The maximum 
potential improvement is given by the residual variation in the output due to all other causes. 

 
 
17.1 EXAMPLES OF FEEDFORWARD CONTROL 

We illustrate the use of the feedforward approach with three examples. 
 

Potato Chip Spots 
 

When making potato chips, dark spots on the chips were undesirable to the customers. In 
the existing process, the dark spot problem was an uncommon but significant concern. A 
team was assigned to reduce the occurrence of dark spots. Dark spots were measured on a 
scale from 1 to 10 for each lot of chips. The rating was subjective, but by using the same 
assessor, the measurement system added little variation. The team used existing production 
records to quantify the baseline. The lot average score was 1.83 and the full extent of vari- 
ation was a range of scores from 1 to 8. They also discovered that there was strong time-to- 
time variation in the occurrence of dark spots. 

Stratifying by potato batch and investigating further, they suspected that the sugar con- 
centration in the incoming potatoes was the dominant cause. To verify the suspicion, the 
team produced chips using five different batches of potatoes chosen to have a wide range 
of sugar concentrations. From each batch of potatoes, three lots of chips were produced. 
The resulting data are given in Table 17.1 and plotted in Figure 17.2. 

 
 
 

Table 17.1 Potato chip spots data. 
 

 
 

Batch 
Sugar 

concentration 
Dark spot 

scores 

1 0.3% 1, 1, 2 

2 0.4% 2, 1, 3 

3 0.5% 4, 5, 5 

4 0.6% 5, 4, 4 

5 0.7% 5, 6, 7 
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Figure 17.2 Scatter plot of dark spot score versus sugar concentration (%). 

 
 

The team decided to implement a feedforward control scheme. They noticed that a sig- 
nificant number of dark spots occurred when the sugar concentration was 0.5% or greater. 
They knew they could reduce the average sugar concentration in a batch of potatoes by 
storing them for several weeks at temperatures above 13°C. Any batch of potatoes with 
initial sugar concentration above 0.4% was stored until the sugar concentration decreased. 
Otherwise the potatoes were processed immediately. The dark spot problem was virtually 
eliminated (Nikolaou, 1996). There were added storage and logistic costs but no other 
reported negative side effects due to the storage. 

 
 

Steering Wheel Vibration 

An automobile manufacturer incurred major warranty costs because of customer complaints 
about steering wheel vibration. A Six Sigma team found that the dominant cause of vibration 
was imbalance in the transmission. Reformulating the problem in terms of transmission imbal- 
ance, the team established a baseline using 200 transmissions selected from two days’ produc- 
tion. The data are given in the file steering wheel vibration baseline. The distance between the 
center of gravity and the axis of rotation of the transmission quantifies imbalance, so lower is 
better. We show the histogram of the baseline data in Figure 17.3. The goal of the project was 
to reduce the imbalance to less than 2.0 on all transmissions since this would eliminate the 
vibration problem. In the baseline data, 20.5% of the transmissions exceeded this limit. 

The team proceeded to look for a dominant cause without checking the measurement sys- 
tem since they were confident in their ability to measure imbalance. Using a component swap 
investigation (chapters 11 and 12), the team found that the dominant cause of the imbalance 
was an interaction between two mating components based on their relative orientation as set 
in the assembly process. Scaling for relative mass, the imbalance in the two components con- 
tributed roughly the same amount to the overall variation. The team also observed in the com- 
ponent swap investigation that the imbalance could be substantially reduced during 
reassembly by aligning the two components so their individual imbalances were offset. 
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Figure 17.3 Baseline histogram of imbalance. 

 

The team had several choices of approach. They could reformulate the problem again and 
try to reduce the imbalance in each of the two components. They could implement 100% 
inspection and rework transmissions with imbalance greater than 2.0, a very expensive 
option. Instead, they decided to assess the feasibility of feedforward control. In the assembly 
process, they planned to measure the center of gravity of each component and then assemble 
the two parts so that there was a maximum offset (that is, the two centers of gravity were set 
180° apart). Assembling in this way is called vectoring. See Figure 17.4. 

To estimate the possible improvement from vectoring, the team measured the center of 
gravity for 100 pairs of the two components selected over two days to match the baseline 
investigation. We give the data in the file steering wheel vibration feedforward. 

The team calculated the imbalance for each sampled pair if vectoring had been used in 
the assembly. The histogram for these simulated data is shown in Figure 17.5. For these 
data, 3.5% of the transmissions had imbalance greater than 2.0, a marked improvement 
over the baseline. 

Component 1 Component 2 Vectored assembly 
 
 
 

X 
X 

 
X X 

 
 
 

Figure 17.4 Vectoring to reduce imbalance (the X shows the location of the center of 
gravity for each component). 
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Figure 17.5 Histogram of simulated imbalances for vectored assemblies. 

 
 

Since vectoring alone cannot meet the goal, the team considered selective fitting fol- 
lowed by vectoring, a more complicated and expensive option. The idea was to select a pair 
of components with similar imbalances and then vector them. There are two steps: 

• Sort the second component into bins based on its measured imbalance. 

• Measure the first component and select a matching second component from the 
appropriate bin. 

The team needed to determine how best to sort the components (that is, determine the 
number of bins and their boundaries) and whether sorting was worth the trouble. 

To quantify the possible benefits of selective fitting with different bin structures, the 
team used the data from the feedforward investigation to simulate several scenarios. They 
explored the effect of sorting by creating two or three bins for the second component. 
With two bins, the components were divided based on whether their imbalance was less 
than or greater than 0.75. This is roughly the middle of the range for both components in 
the sample. With three bins, the boundaries were 0.33 and 0.90. The simulation results are 
presented in Table 17.2. The benefits of selective fitting are clear. The goal can be reached 
by using a combination of sorting components and then vectoring. We give a more 
detailed explanation of how this simulation was done in the supplement.1 

The team decided to implement feedforward control using selective fitting with two 
bins and vectoring. They arranged for the off-line measurement of the center of gravity 
(imbalance and angle) of the second component. The angle was marked on each compo- 
nent. The components were then sorted into two bins depending on whether the imbalance 
exceeded 0.75. In the assembly process, the center of gravity for the first component was 
measured. This component was then matched with a mating second component from the 
appropriate bin and the two selected components were vectored. 
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Table 17.2 Results of simulating selective fitting. 
 

 
 

Assembly method 
Average 

imbalance 
Standard deviation 
of the imbalance 

Percentage 
greater than 2.0 

Baseline 1.31 0.83 21% 

Vectoring only 0.80 0.61 4.8% 

2 bins and vectoring 0.46 0.41 0% 

3 bins and vectoring 0.36 0.38 0% 
 
 

In determining this implementation plan, the team considered a number of logistical 
issues. They determined that it was feasible to: 

• Keep the necessary bin of the second component on the assembly lines. 
• Measure the imbalance and direction for the first component as part of the 

assembly process. 

Originally, they planned to have the component suppliers measure, mark, and bin both 
components. Then, in the assembly process, matching components would have been selected 
from the appropriate bins. The suppliers resisted and the idea could not be implemented. 

The team validated their solution by repeating the baseline investigation. The average 
overall imbalance of the transmission was 0.59, and fewer than 1% of the assemblies had 
imbalance exceeding 2.0, not quite reaching the goal but a substantial improvement. 

Selective fitting and vectoring added substantial logistic and measurement costs. Occa- 
sionally, there were problems because one of the bins for the second component was empty. 
This is one reason the team had opted for two rather than three bins. The extra improvement 
from three bins did not seem worthwhile considering the additional cost and complexity. 

 
 

Truck Pull 
 

In Chapter 1, we described a project to reduce variation in pull, an alignment characteristic 
of trucks. At an earlier stage of the project than that described in Chapter 1, the team found 
that the dominant cause of pull variation was the truck frame geometry. They selected feed- 
forward control as a working approach. As part of the search for the dominant cause, 100 
frames had been selected from regular production over two weeks. Working with the supplier, 
the geometry was measured for each frame and reduced to four summaries (left front, right 
front, left rear, and right rear) thought to affect caster and camber, the measured alignment 
characteristics that determine pull. The team had the frames built into vehicles using the 
normal process and measured the caster and camber for each truck. The data are given in the 
file truck pull feedforward. We focus here on left caster. 

To establish a relationship between caster and the frame geometry, we fit a regression 
model to predict caster as a function of the truck geometry. See the supplement to Chapter 11 
for more details on regression models. The MINITAB results are: 
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The regression equation is 
left caster =    –18.6 +  1.24 left front +  0.677 right  front  + 0.140  left rear  + 
1.156 right rear 

 

Predictor Coef SE Coef T P 
Constant –18.6097 0.6100 –30.51 0.000 
left front 1.24243 0.04018 30.92 0.000 
right front 0.67669 0.03585 18.88 0.000 
left rear 0.13953 0.02763 5.05 0.000 
right rear 0.15624 0.04162 3.75 0.000 

 

S  =  0.1760 R-Sq = 96.4% R-Sq(adj)  =  96.2% 
 

Analysis of Variance 
 

Source DF SS MS F P 
Regression 4 77.827 19.457 627.82 0.000 
Residual Error 95 2.944 0.031   
Total 99 80.771    

 

Truck frame geometry is a good predictor of the left caster value. We make the prediction 
by substituting the known frame geometry summaries into the equation: 

 
 

left caster = –18.6 + 1.24 left front + 0.677 right front + 0.140 left rear + 0.156 right rear 
 

 
The standard deviation of the left caster for the 100 vehicles in the investigation is 0.903. The 
residual standard deviation is 0.176. If we could eliminate the effect of the variation in 
the frame geometry, we could reduce the variation in left caster by a factor of five. There 
was a similar pattern for the other alignment characteristics. 

In reality, a mathematical prediction model was built using knowledge of the geometry 
of the suspension. The regression model mimicked the mathematical model well. 

Since the potential benefit was large, the team recommended implementing feedforward 
control. For each frame, the supplier measured and bar-coded the frame geometry sum- 
maries. Then at the truck assembly plant they: 

• Read the geometry summaries from the bar code and used the values to predict 
caster and camber. 

• Built positioning components based on the prediction to adjust the caster and 
camber. 

• Used the custom components to position the suspension components on the 
frame during the assembly. 

After implementing feedforward control, the standard deviation in left caster values, given 
in the file truck pull validation, was 0.25. The full reduction in left caster variation predicted by 
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the regression model was not achieved because there was some error in building and using 
the positioning components and there were also small errors in the mathematical model. 

There was a large benefit for the extra cost in terms of reduced warranty claims. The 
truck pull variation was reduced by roughly 70% through the use of the feedforward 
controller. 

 
 
 
17.2 ASSESSING AND PLANNING FEEDFORWARD 

CONTROL 

To successfully implement feedforward control, we must: 

• Identify an adjuster that can be used repeatedly to quickly move the process center. 

• Define a scheme to sample and measure the dominant cause. 

• Determine a method to predict the output on the corresponding part. 

• Specify an adjustment rule, that is, determine when and how much to adjust the 
process. 

• Assess the sampling, measuring, and adjusting costs. 

• Estimate the benefit of the process change. 

If we can accomplish all these tasks, and the benefits outweigh the costs, we proceed to the 
validation stage of the algorithm. 

The use of an adjuster for feedforward control is different from its use to move the process 
center as described in Chapter 15. We expect to make frequent adjustments of different sizes 
over time to compensate for changes in the dominant cause. Adjusters suitable for a one-time 
shift of the process may not be useful in feedforward control. In implementing feedforward 
control, perfect adjustment is typically not possible. For example, when using selective fitting, 
finding perfectly matched components may be too much effort. 

We must be able to measure the dominant cause with an effective and timely measure- 
ment system. If there are large errors in measuring the cause, these errors will affect the 
prediction of the output and hence the adjustment procedure. The measured value of the 
cause must be available in time to make the adjustment. 

In both the potato chip spots and steering wheel vibration examples, we used informal 
prediction of the output using the measured value of the dominant cause. The simplest formal 
model is a linear relationship between the cause and the output characteristic. That is 

 
 

predicted output = intercept + slope * dominant cause 
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Predictions should be accurate for the full range of values normally seen for the dominant 
cause. Informal methods and simple models may give poor predictions and more compli- 
cated models are sometimes warranted.2 

Feedforward control is effective only if based on a dominant cause. By definition, we 
cannot predict the output well with a cause of variation that is not dominant. If we base an 
adjustment on a poor prediction, we may increase rather than decrease the output variation. 

If we measure the dominant cause for every unit, we must be able to apply the adjustment 
to each unit. This can be a difficult task in a complex process, especially if the adjust- 
ment takes place far downstream from the measurement of the cause. In the truck pull 
example, the team solved this difficulty by bar-coding the frames. 

The frequency of adjustment depends on how the dominant cause varies. If the domi- 
nant cause acts in the part-to-part family, we may need to make an adjustment for every 
part. If the dominant cause acts in the time-to-time family, we can make adjustments less 
often, as in the potato chip spots example. Since frequent adjustment adds to the cost and 
complexity of the process, the feasibility of feedforward control depends on the nature of 
the variation of the dominant cause. If adjustment costs are large, we may decide to only 
adjust when the difference between the predicted output and the target is large. 

In the truck pull example, we use the residual standard deviation after fitting a regres- 
sion model relating the output and the dominant cause to estimate the benefits of feedforward 
control. This standard deviation underestimates the remaining variation because there are 
likely measurement, prediction and adjustment errors. In cases where the dominant cause 
acts batch-to-batch, such as in the potato chip spots example, we use the within-batch vari- 
ation as an optimistic estimate of the benefit. We can sometimes use available process data 
to simulate the performance of a proposed feedforward controller to assess its benefit, as in 
the steering wheel vibration example. 

Feedforward control is related to feedback control, described in Chapter 18. In both 
approaches we reduce variation by adjusting the process based on a prediction of the output. 
The fundamental difference is that, with feedforward control, we predict the output using 
the dominant cause, while with feedback control, we predict the future output using previ- 
ously observed output values. 

Feedforward control can also be thought of as a way of desensitizing the process to 
variation in a dominant cause, as discussed in Chapter 16. In the desensitization approach, 
we searched for process settings that permanently made the process less sensitive to vari- 
ation in a dominant cause. With a feedforward controller, the desensitization requires 
repeated adjustments to compensate for the different values of the dominant cause. 

There is little published work on feedforward controllers available in the statistical 
literature. The most comprehensive work is Box and Jenkins (1976). See also Jenkins (1983). 
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• A feedforward controller compensates for the value of a dominant cause by pre- 
dicting the output from the measured value of the cause and then adjusting the 
process based on the deviation between the prediction and the target. 
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• To implement feedforward control, we require the value of a dominant cause, 
knowledge of the relationship between the cause and the output in order to make 
the prediction, and a timely and cost-effective adjuster. 

• If the dominant cause acts in the time-to-time family, we need to adjust once, at 
most, once time period. 

 
 
 
 
 

Endnotes (see the Chapter 17 Supplement on the CD-ROM) 

1. In the supplement, we explain how to assess the potential benefits of vectoring and selective 
fitting in the steering wheel vibration example using simulation and the available data. 

2. In some applications more complicated prediction methods or models are warranted. In the 
supplement we give references for these methods. 

 
 
 
 
 
 

Exercises are included on the accompanying CD-ROM 
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18 
Feedback Control 

 
 
 
 
 
 

Quality is never an accident, it is always the result of intelligent effort. 

—John Ruskin, 1819–1900 
 
 
 

eedback control is used to compensate for a predictable pattern in the output char- 
acteristic due to known or unknown causes. We reduce variation by predicting the 
next output value using previously observed output values. Then we adjust the 

process center to compensate for the deviation between the predicted output and the target. 
We do not need to identify a dominant cause of variation with this approach. We illustrate 
how to implement a feedback control scheme in Figure 18.1. 

For feedback control to be effective, the requirements are: 

• The dominant cause must act in the time-to-time family. 

• There must be a timely way to adjust the process center. 

The potential costs of feedback control include: 

• An investigation to explore the time pattern in the output, if not known 

• An experiment to find an adjuster, if one is not known 

• The ongoing costs of measuring the output and making the adjustment 
 
 
 

Measure 
output 

characteristic 

No adjustment 
required 

 

Adjust Adjustment 
required 

 
Figure 18.1 Feedback control schematic. 
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We can assess the potential benefits of feedback control once we know the time pat- 
tern of variation in the output. With feedback control we can at best hope to eliminate the 
time-to-time component of the output variation. 

 
 

18.1 EXAMPLES OF FEEDBACK CONTROL 

We illustrate the use of feedback control with five examples. 
 

Parking Brake Tightness 

In a vehicle assembly process, there was a problem with excess variation in parking brake 
tightness that led to considerable rework. To measure tightness the team determined the 
number of clicks until the brake locked. The specification was 5 to 8 clicks. At final inspection, 
the plant found parking brakes that were both too tight and too loose. 

In the baseline investigation, the tightness ranged between 3 and 9 and there were runs 
of high and low values. The dominant cause acted in the time-to-time family. Based on this 
clue and process knowledge, the team speculated that the dominant cause of tightness vari- 
ation was the length of either the front or axle cables. The two assemblies that include these 
cables were delivered in batches from a supplier. To search for the dominant cause, the 
team conducted an investigation where parking brake tightness was measured for three 
consecutive vehicles for 12 combinations of batches of the two cable assemblies. 

The data are given in the file parking brake tightness multivari. From Figure 18.2, we 
see that the dominant cause acts in the front cable assembly and differs from batch to batch. 
The variation within batches is substantially smaller than the batch-to-batch variation. The 
baseline tightness values ranged over seven possible values; within a batch of front cable 
assemblies, the range covered only three values. In the multivari investigation there were 
six different tightness values, which roughly matches the full extent of variation. 

The team did not further explore front cable length as a suspect. They could not measure 
the length of the cable in the plant since it arrives as part of an assembly. Because the dom- 
inant cause was in the batch-to-batch family, they decided to consider feedback control. 
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Figure 18.2 Box plot of tightness by front and axle cable batch. 
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To implement the approach, they needed to find an adjuster. The team knew that changing 
the depth of an adjustment nut would change parking brake tightness. To calibrate the adjuster, 
they selected five vehicles of varying tightness to cover the full extent of parking brake tightness 
variation. The parking brake system on each vehicle had been originally installed with the 
adjustment nut at a depth of 24 millimeters. The team reinstalled the parking brake system on 
each vehicle with the nut at the four depths 22, 23, 25, and 26 millimeters and measured the 
corresponding tightness. The data are given in Table 18.1 and in the file parking brake tight- 
ness adjuster calibration. 

We use MINITAB to fit a regression model to relate the average tightness to the depth 
with results: 

 
The regression equation is 
average  =  –15.0  +  0.880  depth  (mm) 

 

Predictor Coef SE Coef T P 
Constant –15.000 1.666 –9.01 0.003 
depth (mm) 0.88000 0.06928 12.70 0.001 

 

S  =  0.2191 R-Sq = 98.2% R-Sq(adj)  =  97.6% 
 

Analysis of Variance 
 

Source DF SS MS F P 
Regression 1 7.7440 7.7440 161.33 0.001 
Residual Error 3 0.1440 0.0480   
Total 4 7.8880    

 

The estimated slope is 0.88, so changing the adjustment nut depth by one millimeter will 
change the tightness, on average, by about 0.88 clicks. 

There was little cost to measuring tightness and to changing the depth of the adjust- 
ment nut. Since the dominant cause was in the batch-to-batch family, the team concluded 
that feedback control was feasible. 

To implement the approach, the team decided to measure the tightness of the first five 
vehicles assembled for each new batch of front cable assemblies. These measurements 
were made as soon as possible once the parking brake was installed. They made an adjustment 

 
Table 18.1 Parking brake tightness adjuster experiment results. 
Vehicle 22 mm depth 23 mm depth 24 mm depth 25 mm depth 26 mm depth 

1 2 2 3 4 5 

2 2 3 4 5 6 

3 4 5 6 7 7 
4 7 7 8 9 10 

5 8 8 9 10 11 

Average 4.6 5.0 6.0 7.0 8.0 
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if any of these measurements was outside the specification limits (5 to 8). The amount of 
the adjustment was based on the difference between the target tightness (6.5) and the average 
tightness for the five vehicles. To increase the average tightness by one click, they increased 
the depth of the adjustment nut by roughly 1/0.88 = 1.14 millimeters. For ongoing protec- 
tion, and to ensure that the feedback control was effective, they changed the control plan so 
that within a batch of front cables, the parking brake tightness was measured on every tenth 
vehicle. If an out-of-specification vehicle was found, then all vehicles for that batch were 
inspected and reworked if necessary. After implementation, there was a marked reduction 
in the amount of rework required because of parking brake tightness variation. 

 
V6 Piston Diameter 

We discussed the problem of excess diameter variation in the production of V6 aluminum 
pistons in chapters 2, 5, 9, and 11. From the problem baseline investigation, the team learned 
that the process was centered on target with standard deviation 3.32 microns. The problem 
goal was to reduce the standard deviation to less than 2.0 microns. The team determined that 
the measurement system was adequate and, using a variation transmission investigation (see 
Chapter 11), that the home of the dominant cause was the intermediate Operation 270. They 
reformulated the problem to reduce the variation in the diameter as measured at Operation 270. 

At Operation 270, there were two parallel grinders. To better understand the perform- 
ance of the process, the team measured one piston a minute from each grinder for 200 
minutes. They ensured that no adjustments were made to the grinders while the data were 
collected. The data for stream 1 are given in the file V6 piston diameter 270. Diameter is 
recorded in microns as the deviation from 87 millimeters. Thus, a measured diameter of 

87.595 millimeters is recorded as 595. We show the run chart for stream 1 in Figure 18.3. 
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Figure 18.3 Diameter at stream 1 at Operation 270 by minute. 
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The plot for the second stream is similar. Once the data were stratified by stream, the team 
saw that the short-term variation in the diameter was small relative to the time-to-time 
variation. 

Based on the run chart, the team decided to look at the feasibility of feedback control 
separately for each stream. They found this approach attractive because they knew that 
the operator could make an adjustment at Operation 270 within a short time and with 
immediate effect. 

The team selected an informal feedback scheme similar to precontrol.1 The rules for 
each stream were: 

• Every 15 minutes, measure the diameter of two consecutive pistons after 
machining. 

• Compare the average diameter to the adjustment limits 592.7 and 600.7 microns. 

• If the average falls outside the limits, adjust the process to the target 596.7 microns. 
The size of the adjustment, if any, is the difference between the observed average diameter 
and the target. 

The team derived the adjustment limits by working backwards using information about 
the relationship between the diameter at Operation 270 and the final diameter. To meet the 
overall goal, they needed the final diameter to be well within the specification limits of 591 
±10 microns. 

To assess the potential gain from this approach, the team used the data in the file V6 pis- 
ton diameter 270 to simulate the effect of feedback control.2 They assumed the adjustment 
was perfect in the simulation, which would not be true in practice. We see the results of the 
simulation in Figure 18.4. 
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Figure 18.4 Diameter at stream 1 of Operation 270 by minute (solid line gives the original 

series, dashed line gives the adjusted series). 
 

 

We estimate the benefit of the proposed feedback scheme by comparing the adjusted 
and unadjusted series. Using MINITAB, we get: 

 
Variable N Mean Median TrMean StDev SE  Mean 
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original 200 5.808 5.548 5.770 3.269 0.231 
adjusted 200 6.024 6.078 6.027 1.694 0.120 

 

Variable Minimum Maximum Q1 Q3 
original -1.300 12.586 3.552 7.916 
adjusted 1.490 11.703 4.753 7.231 

 

Based on the simulation, we expect the feedback controller to reduce the standard 
deviation of the diameter at Operation 270 from 3.3 to about 1.7. We combine this information 
with the results from the variation transmission investigation (see the supplement to Chap- 
ter 11) to predict that after implementing the feedback controller, the standard deviation in 
the final diameter would be reduced to 

 
 ( )22 20.88 1.7 1.224 1.93 microns+ =  

 

The team changed the control plan at Operation 270 and trained the operators to use the 
new control scheme. They also arranged for a periodic process audit to ensure the new 
scheme was being used. 

After implementation, the team repeated the baseline investigation to validate the 
improvement. The standard deviation of the finished diameter was reduced from 3.32 to 2.20 
microns. 

 
 

V8 Piston Measurement System 

In the production of V8 pistons, a 100% inspection gage checked many outputs and rejected 
pistons not meeting specifications. An auditor retrieved a piston from shipped inventory and 
remeasured it on the inspection gage. The piston was badly out of specification with respect 
to one of its diameters, measured at a fixed height on the skirt. The measured diameter was 
13.2 microns (measured from the nominal dimension) compared to the specification ±9.0 
microns. 

Management assigned a team to prevent the shipment of out-of-specification pistons. 
The team reviewed the calibration procedure for the gage, which was carried out once per 
day. They conducted a short-term measurement system investigation, measuring 10 pistons 
three times each in haphazard order within 15 minutes. The data are given in the file V8 pis- 
ton diameter short-term measurement. The results of a one-way analysis of variance from 
MINITAB are: 

 
 

Analysis of Variance for diameter 
Source DF SS MS F P 
part 9 524.587 58.287 328.07 0.000 
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Error 20 3.553 0.178 
Total 29 528.140  

 

Pooled StDev = 0.4215 
 
 

The estimate of measurement variation was 0.42 microns. If the diameter was within 
specification at the original measurement, we cannot explain a measured value 13.2 by the 
short-term measurement system variation. 

The team next decided to assess the stability of the measurement system by measuring the 
same two pistons every 15 minutes for 12 hours, starting immediately after calibration. The 
data are given in the file V8 piston diameter measurement stability and plotted in Figure 18.5. 

Over the 12-hour period, the variation was much larger than expected based on the 
results from the short-term measurement investigation. The range of diameter values for 
each piston was around 8 microns. This drift could easily be responsible for the out-of- 
specification piston found in the audit. 

The team immediately increased the frequency of calibration to every two hours. They 
decided not to look for the cause of the drift but instead implemented a feedback control 
scheme. Immediately after calibration and then every 15 minutes, the operator measured 
the same piston and recorded its diameter. If the change from the initial measurement was 
more than 1.8 microns (in either direction), the process was stopped and the gage was 
recalibrated. Note that the short-term standard deviation of the difference in two measure- 
ments on the same piston is 0.42 2 0.59 , so a difference of 1.8 microns indicates that 
the measurement system has drifted. 

The changes added to the operating cost of the inspection gage. However, no further 
out-of-specification pistons were found in audits. There was a positive side effect. The 
scrap rate due to out-of-specification diameters decreased by about 50%, which more than 
made up for the loss of cycle time of the gage. Before the change, the gage rejected many 

 

 
 
 

10 
Piston 1 
Piston 2 

 

 
 
 

5 
 

 
 
 
 
 

0 
 
 
 
 

0 10 20 30 

Time 

40 50 

 
Figure 18.5 Piston diameters versus time. 

 

 

good pistons. As well, there were fewer adjustments to the upstream machining process 
that had been driven by the drift in the inspection gage. 
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Fascia Film Build 

We introduced a problem of excess variation in the film build (paint thickness) of fascias in 
Chapter 3. After finding the dominant cause, the team reformulated the problem in terms of 
flow rate. To establish a baseline for the new problem, the team recorded the flow rate every 
minute for three hours. The data are given in the file fascia film build baseline and plotted 
in Figure 18.6. Feedback control is a possibility here since eliminating the drift over time 
would reduce the variation in flow rate substantially. The range of flow rate values over the 
short term is less than half the long-term range. 

Since the team knew they could adjust the flow rate quickly using a valve, they decided 
to investigate the possibility of using feedback control to reduce flow rate variation. 

This team took a more formal approach. To predict the flow rate at the next minute, 
they used an exponentially weighted moving average (EWMA).3 To explain this method, 
let yt be the measured output at time t (measured in minutes here). Then we predict the next 
value of the output, denoted ŷt +1, using a weighted average of previous values as given in 
Equation (18.1). 

 

( ) ( ) ( )2 3
1 1 2 3ˆ 1 1 1 ...t t t t ty y y y yα α α α α α α+ − − −= + − + − + − +  (18.1) 

 
 

where α  (the Greek letter alpha) is a constant and 0 < α  ≤ 1. In the prediction, the 
most recent value yt gets the highest weight α , the next most recent point, yt–1, gets the 
second highest weight ( )1α α− , and so on. You can use a bit of probably forgotten 
high school algebra to show that the weights add to one. 
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Figure 18.6 Run chart of flow rate. 
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Figure 18.7 EWMA smoothing of paint flow rate. 

 

 
 

We use MINITAB (see Appendix C) to estimate the parameter α  from the data 
collected over a period of time when there were no adjustments. For the flow rate data, 
we get the results shown in Figure 18.7. The estimated value for α  is 0.169. We also show 
the series of predicted values in Figure 18.7 to demonstrate how the EWMA prediction 
captures the long-term pattern in the series and smoothes the short-term variation. 

Once the controller is operational, we start to make adjustment and se the series that 
includes the effects of earlier adjustments. Let *

ty  be the observed output with the 
controller in operation. After some algebra,4 we can show that the appropriate adjustment 
at time t is ( )* Targettyα −  in the direction of the target. In other words, if *

ty  is greater 

than the target value, we move the process center down by ( )* Targettyα − . Here we 
assume adjustments are made after every measurement. 

If we make perfect adjustments, we get an estimate of the process standard deviation 
when the controller is in use from the MINITAB results. For this example, the estimated 
standard deviation is 1.96 ( MSD  in Figure 18.7), a substantial reduction from 3.23, the 
standard deviation of the unadjusted series, which serves as a baseline here. 

To implement this feedback control scheme, the team calibrated the valve and auto- 
mated the adjustment so that it could be carried out each minute. The standard deviation of 
the film build was markedly reduced. 

 
 

Truck Pull 
 

In Chapter 1 and elsewhere, we discussed a problem with excess pull variation in trucks. Pull, 
an alignment characteristic, is a linear function of left and right camber and caster. The base- 
line data truck pull baseline include the values for left and right caster and camber on more 
than 28,000 trucks produced over a two-month period. As a result of the problem focusing 
effort discussed in Chapter 6, the team determined that reducing caster variation was the 
highest priority. They searched unsuccessfully for a dominant cause of this variation. 

 

 

The team then decided to investigate feedback control as an approach to reduce the 
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caster variation. We illustrate the assessement of feasibility using right caster. There were similar 
results for left caster. The target for right caster is 4.5°. A summary of the baseline data is: 

 
Descriptive Statistics: r-caster 

 

Variable N Mean Median TrMean StDev SE  Mean 
r-caster 28258 4.5188 4.5210 4.5192 0.2427 0.0014 

Variable r-
caster 

Minimum 
3.0440 

Maximum 
5.9380 

Q1 
4.3600 

Q3 
4.6780 

  

 

The process is well centered with standard deviation 0.243°. We see in the plot of right 
caster angle over time (see Figure 18.8) that there is some drift in the process near the middle 
of the series. 

The team knew they could adjust caster using the same custom components that were 
built for the feedforward control scheme discussed in Chapter 17. Since these components 
were manufactured and assembled approximately two hours before caster was measured, 
feedback control based on adjustments after each truck was not feasible. The team decided 
to investigate the effects of making an adjustment once per shift. The process is run with 
three eight-hour shifts per day. 

As a first step, they looked at a one-way analysis of variance as described in the supple- 
ment to Chapter 11. The idea was to separate the baseline variation into two components, 
variation within shifts and variation from shift to shift. The partial results from MINITAB are: 

One-way ANOVA: r-caster versus shift 

Analysis of  Variance  for r-caster 
Source DF SS  MS  F  P       
shift     131 456.378 3.484 81.09 0.000 
Error 28126      1208.334  0.043 
Total 28257     1664.712 

The estimate of the within-shift standard deviation, labeled MS(Error) in the MINITAB 
results, is 0.043  = 0.207. If we could use feedback control to make all the shift averages 
equal, we would expect a reduction in the baseline standard deviation from 0.243 to 0.207, 
a modest improvement. 

Summarizing the caster shift averages gives: 
 

Variable N Mean Median TrMean StDev SE  Mean 
right caster 132 4.5271 4.5135 4.5269 0.1255 0.0109 
shift average       

 

Variable Minimum Maximum Q1 Q3 
right caster 4.1909 4.9721 4.4473 4.6154 
shift average     
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Figure 18.8 Right caster angle over time. 

 
To obtain the shift average summary from the available data, we first store the caster aver- 
ages by shift (see Appendix B). Across the 132 shifts, the standard deviation of the shift 
averages is 0.126. We plot the shift averages and the predicted averages from the EWMA 
in Figure 18.9. The smoothing constant is 〈 = 0.944, so the most recent shift is given very 
high weight in the prediction of the subsequent shift average. If we use feedback based on 
the EWMA to adjust the process at the start of the shift, then we estimate that the standard 
deviation of the shift averages will be reduced to 0.077 ( 0.00598 ), less than half the 
baseline shift-to-shift variation, 0.126. However, since the within-shift variation is so 
large, this reduction has little impact on the overall variation. 

At this point, the team decided that the potential gain of feedback control would not be 
worth the cost. Given the two-hour time lag and the imperfect adjuster, they knew they would 
not be able to achieve the small gain predicted using the baseline data. 

The team abandoned the problem because no other approach was feasible. 
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Figure 18.9 Right caster average by shift. 
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18.2 ASSESSING AND PLANNING FEEDBACK CONTROL 

To successfully implement feedback control, we must: 
• Identify an adjuster that can be used repeatedly to quickly change the process 

center. 

• Define a scheme to sample and measure the output. 
• Determine a method to predict future output values from the current and past 

output values. 

• Specify an adjustment rule, that is, determine when and how much to adjust 
the process center. 

• Assess the sampling, measuring, adjusting costs, and possible side effects. 

• Estimate the benefit of the process change. 

If we can accomplish all these tasks, and the benefits outweigh the costs, we proceed to the 
validation stage of the algorithm. 

The pattern of variation in the output can be a gradual drift, as in the fascia film build 
example, or a sudden persistent shift, as shown for machining data in Figure 18.10. Sudden 
shifts can occur if the output center depends on the setup procedure, the batch of raw materials, 
tooling changes, and so on. See the chapter exercises for more details on the machining 
process example. 

We observe a pattern of variation with respect to a particular sampling scheme. For 
example, in the fascia film build example, the team measured the flow rate every minute. 
The observed pattern would have been different had they measured the flow rate every 15 
minutes or every 0.1 seconds. The sampling protocol in the baseline investigation may be 
sufficient to reveal the time pattern of variation in the output. If not, we suggest a simple 
multivari investigation with two families, time-to-time and part-to-part. Select the time-to- 
time family (for example, every 15 minutes, every hour, every shift, and so on) based on the 
time required to measure the output and to adjust the process. 
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Figure 18.10 A machining process with persistent shifts due to tooling. 
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We must be able to measure the output quickly compared to the time period that defines 
the family containing the dominant cause of variation. In an iron foundry, there was a one-hour 
delay between the time the iron was sampled and the time the chemistry measurements 
became available. Since the within-hour variation in the process chemistry was relatively 
large, feedback control was not feasible. In the truck pull example, there was a lag of two 
hours between the point of adjustment and the measurement of caster. Hence the team con- 
sidered feedback control schemes that would adjust caster at most every two hours . 

We can make similar comments about the action of the adjuster. If the time for the 
adjustment to take effect exceeds the time period that defines the family containing the 
dominant cause, we cannot use feedback control effectively. 

We recommend determining the pattern of variation before looking for an adjuster 
since the cost of finding an adjuster may be substantial. If needed, we can search for an 
adjuster using an experimental plan as described in Chapter 15. Sometimes we need to 
calibrate a known adjuster, as in the parking brake example, so that we can make adjust- 
ments of different sizes to the process center as required. 

To specify a feedback control scheme, we need: 

• A sampling plan to determine when and how to measure the output 

• A rule to predict future output values and to decide what adjustment, if any, is 
required 

• A procedure to make the adjustment 

The design of the sampling plan involves a trade-off between the cost of measurement 
and the ability to predict the future output values. In the V6 piston diameter example, the 
team decided to measure two pistons every 15 minutes. In the fascia film build example, the 
team measured flow rate every minute. 

To predict future output values, we can use an exponentially weighted moving average 
or a simple method such as the value of the most recent observation. In the supplement, we 
discuss the choice of prediction method more fully.5 

Adjusting after every observation may be undesirable due to the added process complexity 
and adjustment costs. A simple alternative is to use a dead band or bounded feedback 
adjustment (Box and Luceno, 1997). With dead bands, we do not adjust the process if the 
predicted deviation from the target is small. Compared to adjusting after every observation, 
a dead band scheme results in a smaller decrease in variation and a large reduction in the 
number of adjustments. 

The size of an adjustment was the difference between predicted output and the target in 
the examples discussed here. However, in cases where a process is subject to regular drift 
either upward or downward, say due to tool wear, the adjustment may be to the opposite 
side of the specification limit rather than to the target. This idea is illustrated in the discus- 
sion of feedback control in Chapter 3. 

Once we have designed the feedback scheme, we can assess the potential benefits in 
several ways if we have a series of historical data that matches the sampling protocol of 
the scheme. We can simulate the effect by applying the adjustments to the historical series. 
If we base the control scheme on an EWMA, we can use MINITAB to estimate the stan- 
dard deviation of the adjusted process. If we have multivari data with short-term and time- 
to-time families, we can use a one-way ANOVA to estimate the variation within the 
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short-term family. This is the best we could hope to achieve with a feedback control scheme 
designed to eliminate the time-to-time variation. In all cases, we assume adjustments are 
made without error and so, if this is not the case, we overestimate the benefit of a feedback 
control scheme. 

A comprehensive treatment of feedback control from a statistical perspective is given 
in Box and Luceno (1997) and Del Castillo (2002). There are many variations of feedback 
control. See Tucker et al. (1993), Box and Jenkins (1994), and Box and Luceno (1997) for 
further details. Specific examples include acceptance control charts (Duncan, 1986) and 
precontrol (Shainin and Shainin, 1989; Juran, Gryna, and Bingham, 1979).6 There is also 
an extensive engineering literature on feedback control.7 

If a dominant cause acts part to part, using feedback control will result in increased 
variation. This is called tampering by Deming (1992, pp. 327–328). The effect of tampering 
is shown by Deming’s famous funnel experiment. 

 
 

Key 
Points 

• Feedback control is based on predicting future output values using the current 
and past output values and adjusting if appropriate. 

• Feedback control may be effective if the (unknown) dominant cause acts in the 
time-to-time family. 

 
 

Process Output 
 

Control 
 
 

• Feedback control requires an adjuster that moves the process center quickly, has 
low cost to change, and has small effect on other outputs. 

• We may need to calibrate the adjuster with an experiment because we need to 
make repeated adjustments of different sizes. 

• To implement feedback control, we require a sampling plan and a rule to decide 
when and how large an adjustment to make. 

 
 
 
 

Endnotes (see the Chapter 18 Supplement on the CD-ROM) 

1. There are many other informal prediction and adjustment rules. We briefly describe Grubbs’ 
rule, precontrol, and statistical process control charts used for feedback control. 

2. We describe how to simulate the benefits of a feedback control scheme using a historical 
series. 
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3. In the supplement, we compare EWMA to some other formal prediction methods. We also 

show that using partial compensation of the current deviation from target to determine the 
adjustment is appropriate under some assumptions. 

4. See note 3. 
5. See note 3. 
6. See note 1. 
7. We describe the connection between the simple feedback control schemes discussed here and 

engineering proportional-integral-differential (PID) controllers. 
 
 
 
 
 
 

Exercises are included on the accompanying CD-ROM 
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19 
Making a Process Robust 

 
 
 
 
 
 

It is a capital mistake to theorize in advance of the facts. 

—Sir Arthur Conan Doyle (as Sherlock Holmes), 1859–1930 
 
 
 

o make a process robust, we must find changes to fixed inputs that make the process 
output less sensitive to variation in the unknown dominant cause. The robustness 
approach is similar to desensitization, described in Chapter 16. However, now we do 

not have knowledge of a specific dominant cause. 
The requirements for robustness to be effective are: 

• The unknown dominant cause acts in the short-term family of variation. 

• New settings of fixed inputs that reduce the effect of the unknown dominant 
cause resulting in less output variation. 

To assess the feasibility of robustness, we choose a number of fixed inputs (candidates) and 
an experimental plan to determine if changing the levels of these candidates will make the 
process robust. The first requirement is important because we must define a run to be long 
enough to see the full extent of variation of the output under the current candidate settings. As a 
consequence, the dominant cause will vary over its full range within each run. Hence, for every 
run, we will be able to see if the candidate settings make the process robust to the variation in 
the unknown dominant cause. If the dominant cause acts in the time-to-time family, it will likely 
not be feasible to conduct such an experiment since the runs would need to be too long. 

The costs of the robustness approach include: 

• An experiment to search for the new settings of the candidates 

• A one-time change to the process settings 

• The ongoing operation with the new process settings 

There is no information about whether this approach will be feasible until the experimental 
investigation is complete. There is a risk of running a high-cost experiment with no return. We 
cannot assess the benefits of this approach until we find the new settings for the candidates. 
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19.1 EXAMPLES OF PROCESS ROBUSTNESS 

We present three examples of the robustness approach. We selected the third example to 
demonstrate what can go wrong. 

 
Crossbar Dimension 

We discussed the problem of reducing variation in a crossbar dimension in Chapter 12 and 
the exercises for Chapter 16. The team raised the barrel temperature set point to make the 
process less sensitive to variation in barrel temperature, the dominant cause. When validat- 
ing the solution, they showed the variation in the crossbar dimension was substantially 
reduced but, with the new setting, there was an increase in the frequency of a mold defect 
called burn. They decided to address the burn defect as a new problem. Using a multivari 
investigation, they showed that the dominant cause of burn acted in the part-to-part family. 
but the specific dominant cause was not found. They suspected that the defect occurred 
when the mold cavity filled too fast. In any case, since the suspect dominant cause could 
not easily be controlled, the team decided to try the robustness approach. 

The team planned an experiment with four fixed inputs (candidates): injection speed, 
injection pressure, back pressure, and screw speed. These candidates were selected because 
of their influence on fill time and other potential dominant causes in the part-to-part family. 
They selected two levels for each candidate as given in Table 19.1. 

 

 
 
 
 

    

    

    

    

    
 
 

The team decided to define a run as five consecutive parts. Since they knew the domi- 
nant cause acted in the part-to-part family, they expected it to act within each run. Each run 
was carried out once the process stabilized after changing the values of the candidates. 

The team selected a fractional factorial experiment with the eight runs given in Table 19.2. 
Since there was no proper baseline investigation, the team assigned the letters to the candidates 
so that one of the treatments (treatment 5) corresponded to the current process settings (see the 
Chapter 15 supplement for details). The confounding pattern of the chosen design is given as 
follows. In the resolution IV design, pairs of two input interactions are confounded. 

 
Alias      Structure 
A + BCD 
B + ACD 
C + ABD 
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D + ABC 
AB + CD 
AC + BD 
AD + BC 

 
The burn on each part was classified into one of four categories of increasing severity. 

Levels 1 and 2 were acceptable, while levels 3 and 4 resulted in scrap. The order of the runs 
was randomized. The experimental results are given in Table 19.2 and the file crossbar 
dimension robustness. 

Treatments 2 and 3 are promising relative to the current process as given by treatment 5. 
We plot the burn scores against treatment in Figure 19.1. Because the data are discrete, we add 
jitter in the vertical direction (see Appendix C). We use MINITAB (see Appendix F) to stack 
the treatment and burn score columns to create one row for each repeat in the experiment. 

 
 

Table 19.2   Experimental plan and data for burn robustness experiment. 
 

 
 

Treatment 
Run 

order 
Injection 

speed 
Injection 
pressure 

Back 
pressure 

Screw 
speed 

Burn 
scores 

Average 
burn 

1 4 Slow 1000 75 0.3 1, 2, 1, 1, 1 1.2 

2 8 Fast 1000 75 0.6 1, 1, 1, 1, 1 1.0 

3 2 Slow 1200 75 0.6 1, 1, 1, 1, 1 1.0 

4 3 Fast 1200 75 0.3 1, 2, 2, 2, 2 1.6 

5 5 Slow 1000 100 0.6 1, 3, 2, 2, 1 2.2 

6 7 Fast 1000 100 0.3 3, 3, 2, 2, 4 3.4 

7 1 Slow 1200 100 0.3 1, 1, 1, 2, 2 2.0 

8 6 Fast 1200 100 0.6 2, 2, 4, 3, 2 3.2 
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Figure 19.1 Burn by treatment with added vertical jitter. 
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Figure 19.2 Pareto plot of effects on average burn score. 

 
 

We use the average burn as the performance measure (that is, the response in MINITAB) 
for the analysis. We look for candidate settings that make the performance measure as 
small as possible. 

Fitting a full model with all possible effects, we get the Pareto plot of the effects for the 
average burn score in Figure 19.2. We see that only factor C (back pressure) has a large effect. 
The team assumed the three-input interaction (ABD) confounded with C was negligible. 

We show the main effect plot for factor C in Figure 19.3. The low level of back pres- 
sure gives lower burn scores on average. 

The team decided to reduce the back pressure to 75 and leave the other fixed inputs at 
their original values. We finish this story in Chapter 21. 
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Figure 19.3 Main effect plot for back pressure. 

 
Iron Silicon Concentration 

In a project to reduce variation in the silicon concentration of molten cast iron, the team 
discovered that the existing measurement system was not acceptable. The discrimination 
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ratio was 1.5 and the estimated stdev(measurement) was 0.33. The cause of the measure- 
ment variation was unknown but acted over the short term. 

The measurement process has three major steps: 

• Sample the molten iron and pour coins. 

• Machine and polish the coins. 

• Use a spectrometer to determine the concentration of silicon in the coins. 

In the measurement system investigation, the team saw most of the measurement vari- 
ation in the silicon concentration of coins poured consecutively from the same stream of 
iron, then prepared and measured together. Rather than search for the dominant cause of 
the measurement variation, the team decided to try to make the measurement process 
robust to the unknown cause. They knew that the spectrometer was highly repeatable and 
hence chose candidates from the other steps of the measurement process. Table 19.3 gives 
the five candidates and their levels. 

 
 

Table 19. 3  Candidates and levels for iron silicon 
concentration robustness experiment 
(level in current process given by *). 

Candidates Label Low level High level 

Mold temperature A 300°F 400°F* 

Mold design B old* new 

Cut depth C skin 1/16 inch* 

Surface finish D lathe* polish 

Sample temperature E 70°F* 120°F 
 

 

The definition of a run is a key stage in the planning of a robustness experiment. Since 
the coin-to-coin variation was dominant, the team decided to sample iron and prepare five 
coins as quickly as possible for each run. They expected the dominant cause of measure- 
ment variation would act within each run. 

The team used the resolution III fractional factorial experiment with eight runs and 
treatments given in Table 19.4. The confounding pattern is: 

Alias   Structure   (up   to   order   3) 

A + BD + CE 
B + AD + CDE 
C + AE + BDE 
D + AB + BCE 
E + AC + BCD 
BC + DE + ABE + ACD 
BE + CD + ABC + ADE 



 

290 
Part Four: Assessing Feasibility and Im

plem
enting an Approach 

 
 
 
 
 
 

Table 19.4   Treatments and results for iron silicon concentration robustness experiment. 
 

 
 

Treatment 
Run 

order 
Mold 

temperature 
Mold 

design 
Cut 

depth 
Surface 
finish 

Sample 
temperature 

 Silicon 
measurements 

 
 

Log(s) 

1 1 300 Old Skin Polish 120  2.4, 2.5, 2.3, 
2.2, 1.9 

–1.55 

2 6 400 Old Skin Lathe 70  2.8, 2.0, 2.1, 
2.6, 2.2 

–1.09 

3 5 300 New Skin Lathe 120  2.2, 2.4, 2.3, 
2.2, 2.6 

–1.73 

4 3 400 New Skin Polish 70  2.3, 2.0, 2.3, 
2.3, 2.4 

–2.03 

5 8 300 Old 1/16 Polish 70  2.4, 2.1, 1.8, 
2.2, 2.3 

–1.51 

6 7 400 Old 1/16 Lathe 120  1.9, 2.7, 1.9, 
1.9, 2.4 

–1.03 

7 2 300 New 1/16 Lathe 70  2.5, 2.2, 2.7, 
2.5, 2.7 

–1.65 

8 4 400 New 1/16 Polish 120  2.2, 2.4, 2.1, 
2.5, 2.2 

–1.79 
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A resolution III design can estimate main effects, assuming that two input interactions are 
negligible. 

To conduct the experiment, the team manufactured two new molds and selected two 
old molds. They set the mold temperature to 300° for one of the new molds and to 400° for 
the second, and similarly for the two old molds. They then quickly sampled iron and poured 
40 coins, 10 for each combination of mold design and temperature. Since all coins were 
produced from essentially the same iron, they assumed that the true concentration of sili- 
con in each coin was the same. Next, the team prepared the 40 coins according to the exper- 
imental plan. The data are given in the file iron silicon concentration robustness and 
Table 19.4. 

We are looking for a treatment combination that has little variation. As a first step in the 
analysis, we plot the measured silicon concentration by treatment as shown in Figure 19.4. 
We see that treatments 4 and 8 look promising since they have relatively little variation. 

We summarize the performance of the measurement system for each run using log(s), 
where s is the standard deviation of the five measurements within each run. We use the log 
transformation to better meet the assumptions underlying the model for the data. The 
smaller the within-run variation, the smaller the performance measure. We show the values 
of the performance measure for each treatment in Table 19.4. As expected, treatments 4 and 
8 have the smallest values. From the original investigation of the measurement system, the 
baseline performance is log (.33) = –1.11. 

Figure 19.5 shows the Pareto chart of the effects when fitting a full model. The largest 
effects are the main effects of candidates B (mold design) and D (surface finish). 

To draw conclusions, we summarize the results using the main effects plots given in 
Figure 19.6. With the performance measure log(s), smaller is better, so we see that switching 
to the new mold design and polishing the samples is beneficial. 
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Figure 19.4 Silicon concentration by treatment. 
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Figure 19.5 Pareto chart of the effects on log(s) for iron silicon experiment. 

 

 

To validate that the performance of the measurement system would be improved with 
the new mold design and polished surface finish, the team carried out a simple investigation. 
They sampled 30 coins from the same stream of iron and measured the silicon concentra- 
tion using the new levels for the mold design and surface finish and the current levels for the 
other candidates. Notice that they had not used this treatment in the experiment. The standard 
deviation of the 30 measurements was 0.15, substantially less then the baseline 0.33. With the 
new setting we expect the measurement discrimination ratio to increase to 3.3. 

The team made a risky decision to use a single batch of iron in the robustness experiment. 
By using only one silicon concentration, there was a danger that the conclusions from the 
experiment would not generalize to the range of silicon concentrations seen in the process. 
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Figure 19.6 Main effects for iron silicon concentration robustness experiment. 



Chapter Nineteen: Making a Process Robust 293 
 

 
 

Electroplating Pinskip Defect 

In a chrome plating process, racks of plastic grills were dipped in a series of chemical baths. 
The baseline rate of defective grills was 7.3%, measured over several weeks of production. 
Using Pareto analysis, a team charged with reducing scrap and rework costs found over half 
the defective grills were due to pinskips, small voids in the plated surface. They decided to 
try to eliminate the pinskip defectives. The team did not employ the Statistical Engineering 
algorithm. Instead, they proceeded immediately to the process robustness approach. 

They started by brainstorming a list of possible candidates. They selected the six candi- 
dates, given in Table 19.5. 

 
 

Table 19.5   Candidates selected for 
the pinskip robustness experiment. 

Candidates Name 

A Tank 1 dip time 

B Tank 2 dip time 

C Tank 1 concentration 

D Tank 2 concentration 

E Tank 2 temperature 

F Tank 3 temperature 

 
There was some confusion about the appropriate levels for the candidates, since they all 

varied somewhat in the normal process. For each candidate, the team decided to use the set 
point as prescribed in the control plan as one level (–1) and a new set point outside the nor- 
mal range of variation as the second level (+1). They used their judgment to choose the 
direction of the change. 

For convenience, they defined a run as a rack of 48 grills, all processed simultaneously. 
The performance measure for each run was the number of defective grills in the rack. 

In the past, without much success, the organization had made various attempts to 
reduce the pinskip defect rate by changing the levels of one fixed input at a time. Now, 
the team hoped to find a helpful interaction among the candidates. Accordingly, they 
planned a resolution V experiment with 32 treatments that would allow for the separate 
estimation of all main effects and two input interactions. This was not possible with six 
candidates in a 16-run experiment. They planned to conduct the experiment over four 
days, giving the process time to settle down after changing the candidate levels. The 
candidates C, D, E, and F (the tank concentrations and temperatures) take the longest 
time to change, so they ordered the runs to minimize the number of changes of these 
candidates. 

The experimental plan and the number of defective grills for each run are shown in 
Table 19.6 and are given in the file electroplating pinskip defect robustness. 
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Table 19.6   Electroplating pinskip experimental plan and data. 
 

Treatment A B C D E F Defectives Order 

1 –1 –1 –1 –1 –1 –1 0 1 

2 +1 +1 –1 –1 –1 –1 0 2 

3 –1 +1 –1 –1 –1 +1 1 3 

4 +1 –1 –1 –1 –1 +1 1 4 

5 –1 +1 –1 –1 +1 –1 0 5 

6 +1 –1 –1 –1 +1 –1 1 6 

7 +1 +1 –1 –1 +1 +1 1 7 

8 –1 –1 –1 –1 +1 +1 0 8 

9 +1 –1 –1 +1 –1 –1 0 9 

10 –1 +1 –1 +1 –1 –1 2 10 

11 –1 –1 –1 +1 –1 +1 1 11 

12 +1 +1 –1 +1 –1 +1 2 12 

13 +1 +1 –1 +1 +1 –1 3 13 

14 –1 –1 –1 +1 +1 –1 2 14 

15 +1 –1 –1 +1 +1 +1 7 15 

16 –1 +1 –1 +1 +1 +1 12 16 

17 –1 +1 +1 –1 –1 –1 7 17 

18 +1 –1 +1 –1 –1 –1 1 18 

19 +1 +1 +1 –1 –1 +1 3 19 

20 –1 –1 +1 –1 –1 +1 1 20 

21 –1 –1 +1 –1 +1 –1 0 21 

22 +1 +1 +1 –1 +1 –1 0 22 

23 +1 –1 +1 –1 +1 +1 0 23 

24 –1 +1 +1 –1 +1 +1 2 24 

25 +1 +1 +1 +1 –1 –1 1 25 

26 –1 –1 +1 +1 –1 –1 1 26 

27 –1 +1 +1 +1 –1 +1 2 27 

28 +1 –1 +1 +1 –1 +1 0 28 

29 –1 +1 +1 +1 +1 –1 0 29 

30 +1 –1 +1 +1 +1 –1 1 30 

31 +1 +1 +1 +1 +1 +1 1 31 

32 –1 –1 +1 +1 +1 +1 1 32 
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The experiment was more time-consuming than expected. The team could not com- 
plete the planned eight runs in each day. They found the tank temperatures and concentra- 
tions hard to change quickly. In the end, the experiment was conducted over five days. 

From Table 19.6, there are many promising treatments with no pinskip rejects in the 
rack. Using MINITAB and a full model, we get the Pareto chart of effects shown in 
Figure 19.7. There are three related interactions (CD, CE, and DE) that are large. We present 
a cube plot in Figure 19.8 for the candidates C, D, and E. The plot gives the average number 
of grills rejected per rack for the eight combinations of the three candidates. 
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Figure 19.7 Pareto analysis of effects in pinskips experiment. 
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Figure 19.8 Cube plot of average number of pinskip rejects per run for tank 1 
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The lower the number of rejected grills the better. From the cube plot, the team was 
surprised to see that the process at the current levels (shown as the lower left-hand point in 
the plot) had an average of 0.5 rejects per rack, the best observed performance (tied with 
two other combinations). This was surprising since the current process averaged about 1.6 
defective grills per rack. 

The team concluded that there was no reason to change the process settings based on 
the results of the experiment. They decided to abandon the project. 

We cannot say for certain what went wrong. One possibility is that none of the 
selected candidates interacted with the unknown dominant cause. Alternately, if we examine 
Figure 19.9, a plot of the number of defective grills in the rack versus the order of the runs, 
we see that there was a large burst of defectives during the middle portion of the experi- 
ment. If the dominant cause acts in the time-to-time family, then since each run consisted 
of a single rack, there was little chance of the cause acting within each run and hence no 
chance to see if any of the candidates could make the process robust. Defining a run as a 
single rack of grills is not appropriate if the dominant cause acts in the time-to-time family. 

The lesson here is that the team made a number of poor decisions. They should not 
have jumped directly to the robustness approach. They had little process knowledge to 
help choose the candidates. They had no assurance that the dominant cause would act 
within each run or even in the week used for the experiment. They would have been 
better off first investigating the nature of the process variation and generating more 
clues about the dominant cause before selecting any particular variation reduction 

approach. 
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Figure 19.9 Number of defective grills versus run order. 
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Robustness Experiment Summary 

 
Select candidates and levels based on knowledge of the process. 

  
Question 

Which, if any, combination of the candidate levels reduces the sensitivity of the process to 
variation in unknown dominant causes? 

 
Plan 

 
• Define a run long enough to see the full extent of variation in the output in the existing 

process. 

• Determine the number of parts (repeats) to be measured within each run and the perform- 
ance measure(s). 

• Determine the number of runs. 

• Select a fractional factorial design of resolution III or higher. 

• Randomize the order of the runs as much as is feasible. 

• Make everyone potentially impacted aware of the plan. 
  

Data 

Carry out the experiment. Record the output values, the levels for candidates, treatment num- 
ber, and run order, one row for each run. Use a separate column for each repeat. 

 
Analysis  
• Plot the output by treatment to look for promising treatments. To make this plot, temporar- 

ily arrange the data with a separate row for each repeat. 

• Calculate the performance measure(s) across the repeats for each run. 

• Use a full model and a Pareto chart to analyze the performance measure(s) looking for 
large main and interaction effects. 

• For large effects, construct main and interaction effects plots. 
  

Conclusion 

Identify the levels of the candidates that lead to the best performance. 

 

19.2 ASSESSING AND PLANNING PROCESS ROBUSTNESS 

To successfully implement robustness, we must: 
• Identify the fixed inputs and their levels (the new process settings) that make 

the process robust to variation in the unknown dominant cause(s). 

• Move the process center if required. 
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• Check that the change of settings does not produce substantive negative side 
effects. 

• Estimate the costs of changing the settings and the new ongoing operating costs. 

• Estimate the benefit of the change of settings. 
If we can accomplish all these tasks, and the benefits outweigh the costs, we proceed to the 
validation stage of the algorithm. 

Since we have little or no knowledge of the dominant cause, we are given little guid- 
ance on what candidates to select and how to pick their levels. We recommend using as 
many candidates as feasible and a fractional factorial design. 

The definition of a run is a key step in planning the robustness experiment. To identify set- 
tings that reduce the effect of the unknown dominant cause, we need the cause to act within 
each run. To define a run, we can use knowledge of the time pattern of output variation from a 
multivari, baseline, or other investigations. In the iron silicon concentration example, the team 
knew that measuring the same coin several times in a short period of time would show most of 
the variation in the measurement system. They defined a run to be five consecutive measure- 
ments on coins poured from the same iron. In the electroplating pinskip defect example, the 
team had no knowledge of the time family containing the dominant cause. They specified a run 
as a single rack of grills. This would have been an appropriate choice if the dominant cause 
acted within a rack. However, if the dominant cause acted in the rack-to-rack family or slowly 
over time, then with this definition of a run, the experiment was doomed to fail. 

If the time-based family in which the dominant cause acts is unknown, we recommend a 
multivari investigation before proceeding with a robustness experiment. When the dominant 
cause acts slowly, we need to have long runs so that the cause acts within each run. Long runs 
add to the cost and complexity of the experiment, so in this case, determining robust process 
settings may be infeasible. On the other hand, feedback control may be feasible. 

For each run in the experiment, we calculate a performance measure to assess the behav- 
ior of the process output within the run. We define the performance measure based on the goal 
of the problem. There are many possible performance measures.1 In the iron silicon concen- 
tration example, the performance measure was the standard deviation (actually the logarithm 
of the standard deviation) of the output values measured during the run. The problem goal 
was to reduce the measurement system variation. In the crossbar dimension example, the 
team chose the average burn score over the run to measure process performance. By lower- 
ing the average score, the team hoped to address the problem goal of reducing the frequency 
of burn defects. The team could have selected an alternate performance measure such as the 
proportion of parts scrapped due to burn (as in the electroplating pinskip defect example) in 
each run. With this choice they would have required longer runs since the output is binary. 

We can define and analyze several performance measures (for example, average and 
standard deviation) within the same experiment. For instance, to make a measurement sys- 
tem more robust, we may simultaneously analyze bias and measurement variation as two 
performance measures. In the camshaft lobe runout example, introduced in Chapter 1, the 
goal was to reduce the average and variation in runout. If the team had adopted the robust- 
ness approach, in the experiment, they would have calculated both these performance 
measures within each run. With two or more performance measures we may be forced to 
make a compromise in the choice of settings. 
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We need to have enough repeats within each run to get a good estimate of the process 
performance. It is hard to give a firm rule, but more repeats are better. If measuring the out- 
put is expensive we can use a relatively long run but measure a sample of parts within the run. 

After the experiment, we can assess the costs and benefits of the approach. We can esti- 
mate the performance measure for the new process settings. There are costs associated with 
changing the candidate levels and the ongoing operating costs at the new levels. We also 
need to check for negative side effects. Changing candidate levels may shift the center of 
the process in an undesirable direction. In that case there may be additional costs related to 
finding an adjuster and operating the process at a different level of the adjuster. 

The robustness approach is often selected to reduce the rate of defectives. In the robustness 
experiment for a binary output, we need a run to be long enough so that each run will likely 
contain one or more defective parts. If defectives are rare, we may be able to aggravate the 
process to increase the defect rate for the purposes of the experiment. Then we hope that results 
obtained under the aggravated conditions are relevant for the standard process. For example, 
there were field failures of exterior electrical boxes after several years due to corrosion. The 
team conducted a robustness experiment on the painting process using scored panels in a salt 
spray chamber (a highly aggravated condition) to see if changing fixed inputs would increase 
the durability. 

There is a strong connection between the robustness approach and the desensitization 
approach discussed in Chapter 16. In the latter case where we control the known dominant 
cause in the experiment, we can determine the interactions between the candidates and the 
cause directly in the experiment. With the robustness approach, we can only observe the 
interaction indirectly through the performance measure. 

There is also a connection between the robustness and moving the process center 
approaches. In the electroplating pinskip defect example, the output was binary, and the 
goal of the problem was to reduce the proportion of defective grills. We can view the 
approach taken as either moving the process center or robustness. In either case, we search 
for changes to fixed inputs to achieve the goal without knowledge of a dominant cause. 

We recommend desensitization over robustness if at all possible. In other words, we 
recommend first finding the dominant cause of the variation. We have had little success 
applying the robustness approach. In most circumstances one of the other variation reduc- 
tion approaches is preferred. Selecting the robustness approach is a last hope. 

The idea of analyzing a performance measure such as the within-run standard deviation 
was first suggested by Bartlett and Kendall (1946). Nair and Pregibon (1988) give a motivation 
for using log(s). Taguchi (1986) popularized process robustness and called it parameter 
design. 
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Key 
Points 

 
• We make a process robust by changing fixed inputs to reduce the effects of 

unknown dominant cause(s). 
 
 

??? Process Output 
 
 

• Selecting candidates for a robustness experiment is difficult due to the lack of 
knowledge of the dominant cause. We recommend using as many candidates as 
feasible in a fractional factorial design. 

• We must define a run of the experiment to be long enough so that we would see 
the full extent of variation in the output if no process changes were made. We 
can then be assured that the unknown dominant cause acts within each run. 

• We select a performance measure to reflect the goal of the problem. We calcu- 
late the value of the performance measure for each run of the experiment and 
use it as the response in the analysis. 

• Making a process robust requires a one-time change to fixed inputs such as the 
product or process design or the process control plan. 

 
 
 
 

Endnote (see the Chapter 19 Supplement on the CD-ROM) 

1. Taguchi popularized the robustness approach. We explore his choice of performance 
measures, experimental plans, and analysis methods in more detail in the supplement. 

 
 
 
 
 

Exercises are included on the accompanying CD-ROM 
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20 
100% Inspection 

 
 
 
 
 
 

If you put off everything till you’re sure of it, you’ll get nothing done. 

—Norman Vincent Peale, 1898–1993 
 
 
 

he simplest yet most controversial variation reduction approach is 100% inspection. 
We compare the value of the output characteristic of each part to inspection limits. We 
then scrap, downgrade, or rework any part with output value outside the inspection 

limits. Figure 20.1 shows how adding inspection limits reduces the output variation of accepted 
parts. The inspection limits are tighter than the customer-driven specification limits. To use 
100% inspection, we do not need to know the dominant cause or understand the nature of 
the process variation. 
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Figure 20.1 Reducing variation by adding inspection limits. 
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The requirements for 100% inspection to reduce variation are minimal. We need a meas- 
urement system for the output characteristic with little measurement bias and variation. 

The costs associated with implementing 100% inspection are: 

• The cost of measuring every part 

• The cost of dealing with rejected parts 

We can use the baseline investigation to help assess the second cost. For a continuous 
output, we use the baseline histogram to estimate the increase in the number of rejects due 
to adding or tightening inspection limits. 100% inspection is more effective for eliminating 
outliers than for reducing the standard deviation. 

 
 
20.1 EXAMPLES OF 100% INSPECTION 

We give several examples of the use of 100% inspection to reduce variation. The most 
common application is to a reformulated problem, where we apply 100% inspection to 
reduce variation in the dominant cause. In this context, 100% inspection is a form of error 
proofing. 

 
 

Manifold Blocked Ports 

We introduced the problem of blocked ports in cast-iron exhaust manifolds in Chapter 3. 
The foundry reacted to a customer complaint that a blocked port had been found on an 
engine. One step in the current process was the dropping of a ball bearing through the ports 
of each manifold to ensure that there was no blockage. This manual inspection was some- 
times skipped or poorly done. 

The team had difficulty establishing a baseline since the defect was so rare. They knew 
that blocked ports resulted from cracking in the cores during the pouring process, but they 
had no idea how to determined the cause of core cracking. None of the usual Statistical 
Engineering tools were helpful, because they could find only two manifolds with a blocked 
port over a one-month period. 

The team decided to automate the inspection to keep the rare defective parts from being 
shipped. They investigated whether an ultrasound system could correctly classify ports as 
blocked or not. They were careful in the selection of parts for the investigation. They 
wanted a sample of manifolds with blocked ports that would demonstrate all conceivable 
ways a port could be blocked or even partially blocked. This was difficult since blocked 
ports were so rare. They had only the two manifolds with naturally blocked ports. To get a 
larger sample, they deliberately created blocked ports in 13 manifolds. They also selected 
30 manifolds from regular production that had no blocked ports. 

There were three fixed inputs in the ultrasound system. The team planned a full factorial 
experiment with eight runs. For each run of the experiment, the 45 manifolds were 
inspected 10 times each and classified as blocked or not. A plan with less chance of study 
error would use more parts and measure each part once. 
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For each run, the team counted: 

• n1—the number of times a manifold with a blocked port was passed by the system 

• n2—the number of times a manifold without a blocked port was rejected by 
the system 

The data are: 
 

Treatment A B C n1 n2 

1 Low Low Low 1 7 

2 Low Low High 2 9 

3 Low High Low 3 3 

4 Low High High 1 6 

5 High Low Low 0 2 
6 High Low High 0 12 

7 High High Low 2 13 

8 High High High 1 7 

Since passing a manifold with a blocked port was a serious error, the team considered 
only treatments 5 and 6 where all manifolds with blocked ports were detected. They 
selected treatment 5 since it had a lower rate of rejecting manifolds without a blocked port. 
They changed the operation and control plan so that: 

• The ultrasound system inspected all manifolds and automatically rejected any 
classified as having a blocked port. 

• All rejected manifolds were inspected by hand to determine if a port was 
blocked or not. 

• At the start of each shift, one of the manifolds with naturally blocked ports was 
inspected by the ultrasound system to ensure it was functioning properly. 

In this example, defects were very rare, so the costs were limited to the cost of inspection. 
The inspection cost was less than the loss of goodwill when the customer found manifolds 
with blocked ports. 

 
Drain Hole Cracks 

In a stamping process, the baseline rate of cracks and splits in axle cover drain holes was 
3%. There was 100% inspection by the press operators coupled with an off-line audit of a 
sample from each basket of parts. If a defective part was found in an audit, all baskets filled 
since the previous audit were contained and reinspected. Despite the inspection effort, 
there were frequent complaints from the customer about defective stampings. 

The team suspected that the dominant cause of the cracks and splits defect was in the 
incoming steel and thus outside their control. Without further investigation, they decided to 
100% inspect parts using digital cameras and image processing to detect the defects. The 
cost of the inspection equipment was substantial but operating costs were low. 
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With the new system, there was no need for the audit of inspected parts or for containment. 
There was an increase in scrap and rework costs. However, there were no further complaints 
from the customer about cracks and splits. 

 
 

Broken Tooling 

In a machining process, the process engineer discovered that the dominant cause of broken 
drills in an automated drilling operation was improperly machined parts from upstream in 
the process. He found that these parts occurred when the production line restarted after a 
shutdown and decided to use 100% inspection before the drilling operation. He installed a 
limit switch that detected the poorly machined parts and stopped the line when such a part 
was found before the drills were damaged. The cost of the inspection was low, and there 
were substantial savings in tooling and downtime. 

This example is classic error proofing, 100% inspection applied to the dominant cause. 
 
 

Rocker Cover Oil Leaks 

In an engine assembly plant, management assigned a team to eliminate oil leaks around the 
rocker cover. The team used repair data to estimate that about 1.4% of the engines had such 
oil leaks detected at the final test stands. 

There were two rocker covers per engine purchased from an outside supplier. The covers 
were caulked and then bolted to the engine. In the past, the plant had blamed the supplier 
whenever oil leaks caught the attention of management. 

The team decided to look for the dominant cause using a group comparison. They set 
aside six engines with rocker cover oil leaks. Since each engine had two rocker covers and 
only one leaked, the team had six leaking and six nonleaking covers. They then measured 
a large number of characteristics on each of the 12 covers. However, they could not find any 
characteristic of the rocker cover that separated the leaking and nonleaking sides of the 
engine. After some thought, they decided to examine the whole process, including the 
assembly operation, using a component swap investigation. They were surprised to dis- 
cover that the leaking engines no longer leaked after reassembly. After further investiga- 
tion, they found the dominant cause was poor torque on the bolts that held the rocker cover 
to the engine. 

They decide to put 100% automated inspection on the torque guns to signal if a rocker 
cover bolt was not properly tightened. This change virtually eliminated oil leaks around the 
rocker cover at the final test stands. 

 
 
20.2 ASSESSING AND PLANNING 100% INSPECTION 

To successfully implement 100% inspection, we must: 

• Select appropriate inspection limits. 

• Measure (with low bias and variation) the output for every part produced. 

• Deal with rejects from the inspection. 
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• Estimate the costs of measurement, loss of volume, and dealing with rejects. 

• Estimate the benefits. 

If we can accomplish all these tasks, and the benefits outweigh the costs, we proceed to the 
validation stage of the algorithm. 

Many processes already have 100% inspection because the shipment of a defective or 
out-of-specification part has critical consequences for the customer. For a part such as the 
exhaust manifold, we consider improving the existing inspection system. In the rocker cover 
example, the team added a 100% inspection system to the process to check for proper torque. 

We can apply 100% inspection if the output can be compared to the inspection limits 
or standards (sometimes called boundary samples) with small measurement error. The key 
prerequisite is a stable, nondestructive measurement system with low variation and bias. 

100% inspection does not eliminate defects or out-of-specification parts. We need to 
change the control plan to deal with the rejects. In one disastrous example, rejected parts 
were set aside in a box to be reworked. However, because of poor organization and labeling, 
the box was shipped to a customer. 

Applying 100% inspection to the output is rarely the most cost-effective approach. 
There is less variation in the parts shipped to the customer, but there are increased costs due 
to the larger number of rejects. We think 100% inspection is best suited for situations where 
other variation reduction approaches have not proven feasible or effective. Two potential 
applications are processes with rare defects or when inspection and rework costs are low. 
In the manifold blocked port example, the defect was so rare that the team could not dis- 
cover  the  dominant  cause  of  the  defect  using  empirical  methods. The  only  feasible 
approach was to design an effective low-cost 100% inspection system to detect the rare defect. 

Applying 100% inspection to a dominant cause is called source inspection (Shingo 1986). 
See Shimbun (1988) for numerous examples. In this case, the costs of dealing with the parts 
that fall outside the inspection limits on the cause are likely to be small, since we are applying 
the inspection upstream from the final output. In the rocker cover oil leak example, it was 
much cheaper to detect and repair the poorly tightened bolts than to deal with the leaks after 
the engine had been assembled. 

We often go directly to source inspection on a dominant cause without reformulating 
the problem in terms of the cause. This is an example of the Fix the Obvious approach 
described in Chapter 14. 

Most successful applications of 100% inspection use automated measurement. Human 
inspectors make mistakes at the best of times, and with rare defects, they are unable to 
remain focused. Using multiple inspectors is not a solution since each inspector may 
become complacent with the belief that any problem will be found by one of the others. 

100% inspection is poorly regarded as a variation reduction approach in the quality 
improvement literature. For example, one of Deming’s 14 points exhorts industry not to rely 
on mass inspection to “control” quality (Deming, 1992). Despite its unfavorable image, we see 
100% inspection applied frequently because immediate process improvement is required and 
no other improvement approach is feasible without more process knowledge and investigation. 

A common modification of 100% inspection is inspection sampling where not every  
part is measured. One alternative is to define lots that are accepted or rejected based on the 
quality of a sample taken from the lot. Accepted lots are shipped, and rejected lots are 100% 
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inspected or otherwise disposed. If we know that lot-to-lot variation is large relative to 
within-lot variation, inspection sampling can reduce variation. We can improve an existing 
inspection sampling scheme by redefining a lot, changing the inspection limits, or chang- 
ing the lot acceptance criteria. Compared to 100% inspection, inspection costs are smaller. 
However, overall variation will not be reduced to the same degree. If the dominant cause 
acts part to part, inspection sampling is a poor approach. This is obvious for processes with 
rare sporadic defectives. Deming (1992, chap. 15) showed that if the process is stable, either 
no inspection or 100% inspection is optimal. See also VanderWiel and Vardeman (1994). 

 
 
 

Key 
Points 

 

• We use 100% inspection when defects are critical and rare, so that it is difficult and 
costly to determine a dominant cause, or when the inspection costs are very low. 

• 100% inspection applied to a reformulated problem is one form of error proofing. 
 
 

Process 
 
 

• Most successful applications of 100% inspection rely on automated inspection 
since human inspectors make mistakes. 
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21 
Validating a Solution 

and Holding the Gains 
 
 
 

An investment in knowledge always pays the best interest. 

—Benjamin Franklin, 1706–1790 
 
 
 

e have now reached the final stage of the Statistical Engineering algorithm. We have a 
proposed solution to the problem, a change to one or more fixed inputs of the process. 
We may propose changes to process settings, the addition or deletion of a process step, 

the use of a new supplier, changes to the process control plan, and so on. Although this sounds 
silly, we remind you that the process cannot be improved without making changes to fixed inputs. 

There are two remaining tasks: 

• Validate the proposed solution to see that the goal is met and that there are no 
substantial negative side effects. 

• If the solution is validated, ensure that the process change is made permanent 
so that the gains are preserved. 

 
 
21.1 VALIDATING A SOLUTION 

We must validate a solution to ensure that under the proposed process changes, the process 
performance meets the goal of the project or, at the least, that the benefits outweigh the 
costs. Ideally, we should repeat the baseline investigation to compare the performance 
before and after the process change. We also need to check carefully for unexpected negative 
side effects due to the changes in the process. 

Depending on the costs and risks, we may initially use a small investigation for a preliminary 
validation before conducting a full investigation. We do not want to make it too difficult to 
reverse changes to the process or product until we are confident the expected benefits will mate- 
rialize. During the validation investigation, we monitor the data as they are being collected. 
There is no sense in continuing if it becomes clear that the proposed solution is ineffective. 

In many problems, we assess the baseline performance of the process using historical 
data collected over weeks and months. We cannot afford to wait that long to validate the 
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solution. We can use knowledge we have gained in the process investigations to suggest how 
long we need to observe the original process until we would see the full extent of variation. 
We plan the validation investigation to last at least that long so that we expect to see the new 
full extent of variation with the proposed process changes. 

We may find a proposed solution inadequate for a number of reasons related to taking 
shortcuts in the algorithm with the hope of saving time and money. First, the solution may 
be based on a cause that is not dominant. In that case, the process improvement will be 
small (see Chapter 2). If the algorithm was followed closely, this cannot occur, since the 
algorithm requires verification of the dominant cause. Second, we may not meet the goal 
because of optimistic assumptions. For example, we assume a perfect adjustment method 
in assessing feedback control that is not realized in practice. 

If the solution leads to an improvement that is not sufficient to meet the goal, we need 
to decide whether or not to continue with the implementation. We can make the decision by 
reevaluating costs and benefits. To meet the goal, we need to go back to reconsider the pos- 
sible approaches and look for further changes to fixed process inputs. 

If we have reformulated the problem, we must assess the process change against the base- 
line for the original output. We will have made assumptions about the links between the out- 
put and the dominant cause based on uncertain knowledge. When we validate using the 
original output, we can check that these assumptions were correct. 

We give two examples of validation. 
 
 

Crossbar Dimension 

In the production of an injection-molded contactor crossbar, the problem was excessive vari- 
ation in a crossbar dimension. In the baseline investigation, the team established the full 
extent of variation of the dimension (measured as the deviation from nominal) as –0.3 to 2.3 
thousandths of an inch, with standard deviation 0.46. After some investigation (see Chapter 12), 
they discovered that barrel temperature was the dominant cause of variation. The team pro- 
ceeded using the desensitization approach (see the Chapter 16 exercises). They found that 
increasing the barrel temperature set point reduced the effect of the variation in barrel 
temperature. Since this change increased the crossbar dimension center, they used a known 
adjuster to reduce the average dimension to the target value zero. 

In a preliminary validation investigation, the team found that increasing the average 
barrel temperature resulted in burn defects. They did not search for a dominant cause of the 
burn defect. Instead, they used the robustness approach to find process settings that eliminated 
the defect while at the same time allowing the increased barrel temperature. See Chapter 19 
for further discussion. 

The team next proceeded to a full validation with the proposed process settings. In the 
validation investigation, 300 parts were selected over two shifts. This plan matched the base- 
line investigation. The team measured the crossbar dimension and inspected each part for the 
burn defect. The data are given in the file crossbar dimension validation. The histogram of the 
crossbar dimension from the validation investigation, given in Figure 21.1, shows the reduced 
variation. The standard deviation in the crossbar dimension was reduced to 0.23, and the burn 
defect occurred on only 2 of the 300 parts. With the new settings, the process performance 
met the project goal. 
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Figure 21.1   Histogram of crossbar dimension in the validation investigation. 

 
 

Engine Block Porosity 

In the engine block porosity example introduced in Chapter 3, the goal was to reduce scrap 
due to porosity found on a machined surface of an engine block. The baseline scrap rate 
was about 4%, based on several months of data. There was no formal numerical goal. The 
team devised a porosity score used throughout the problem solving. They did not conduct 
a baseline investigation with this new score. 

To solve the problem, the team recommended a new core wash supplier. They proceeded 
with validation in two steps. First, they switched to the new core wash for a single shift and 
evaluated the results, which were very promising. There were no obvious side effects. They 
then used the new wash for a week, again monitoring the process carefully for porosity defects 
and unexpected side effects. The scrap rate due to bank face porosity was less than 1%. The 
team committed to proceeding with the new core wash. We can see the long-term improvement 
in Figure 21.2 since the change was made in month 13. The cost savings were several hundred 
thousand dollars per year. 
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Figure 21.2 Porosity scrap rate by month. 
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21.2 HOLDING THE GAINS OVER THE LONG TERM 
 

After validating a solution and implementing a process change, we need to ensure that the 
improvement is preserved over the long term. Most aspects of holding the gains are manage- 
ment issues outside the scope of this book. 

In our experience, there are two imminent dangers: 

• The recommended process change is not fully implemented or later reversed. 

• Other fixed inputs are (later) changed in a way that reduces the effectiveness of 
the solution. 

The difficulty in ensuring the implemented change is not reversed depends on the nature 
of the change. To change the design of a product or process, we should adhere to formal 
design change procedures that can be expensive and take considerable time. Such changes are 
not easily reversed. Changes to the process control plan, on the other hand, are easy to make 
but also easy to undo or ignore. In these cases, we need to document the changes and ensure 
that appropriate training is conducted. We also recommend process audits to verify that con- 
trol plan changes continue to be used. 

In many processes, fixed inputs change slowly over time due to wear or aging of equip- 
ment. We have discussed several problems where the obvious fix requires maintenance 
activity. Because at the time the problem has a high profile, the maintenance is carried out 
and the variation is reduced. Over time, as the original problem is forgotten, maintenance 
effort decreases and the projected gains slip away. In such cases, the team can increase the 
chance of holding the gains by implementing a formal monitoring procedure. This is a sim- 
ple form of feedback control added to the proposed solution. We can use a summary of 
process performance over time such as a run chart, a regular calculation of process capabil- 
ity, or a control chart (Ryan, 1989; Montgomery, 1996). In all cases, we need a plan to act 
if evidence from the monitoring suggests the gains are disappearing. 

At the end of a project, we need to preserve any new knowledge of process behavior 
that can be of use to a wider audience. We need to document any process or design changes 
with the supporting reasons for the change. We do not want improvements undone during 
future cost-reduction exercises or in the solution to another problem. 

We can retain information by: 

• Logging design changes in a design guide 

• Documenting of all variation reduction projects on a searchable company 
intranet 

Documenting projects and problems is useful but expensive and time-consuming. In 
our experience most process engineers do not enjoy this activity. See knowledge manage- 
ment books such as Davenport et al. (1997) and O’Dell et al. (1998) for suggestions. 

We give three examples that illustrate the issues. 
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Truck Pull 

As described in Chapter 10, in the early phases of the problem to improve the truck align- 
ment process, the team examined right caster data stratified by the four alignment meas- 
urement machines that operated in parallel. The team was surprised to see the persistent 
material differences among averages of the four gages. Because trucks were assigned an 
alignment gage haphazardly, the gage was a cause of variation in right caster. 

The team took immediate action to recalibrate the four gages to remove the systematic 
differences. To prevent a recurrence, they established a monitoring program to compare the 
daily averages of each measured characteristic for each gage. If they found significant dif- 
ferences, they recalibrated the four gages. Without such monitoring, there is every reason 
to believe that the problem would recur. 

 
 

Fascia Dimension 

At a fascia supplier, management assigned a team to address complaints from their customer, 
a car assembly plant, about difficulties installing the fascias. After consulting with the cus- 
tomer, the team determined that the average of a key dimension was off target and that there 
were too many large fascias. We discussed this example in the exercises to chapters 6 and 15. 

From the baseline investigation, the team estimated the dimension average, measured 
from nominal, to be 7.3, with a full extent of variation of 2 to 12. After some further inves- 
tigation, they proposed changing the cure and cycle times in the molding process to move 
the process center. They made changes to the control plan and carried out a short validation 
investigation. The average dimension was reduced to 3.1, with a range of 1 to 6. Within a 
week in actual production, the new control plan was being ignored. The line operators realized 

that the proposed solution was not as effective as initially thought. 
Mistakes were made in this problem. The main difficulty was that the baseline investi- 

gation was conducted over too short a time period and did not capture the full extent of output 
variation. The team also failed to notice an upward drift in the dimension over the course 
of the baseline investigation. Subsequently, the validation investigation also covered too 
short a time period. Because of the poor plan and analysis for the baseline investigation, the 
team was led to an inappropriate approach and solution. 

 
 

Wheel Bearing Failure Time 

Based on a Pareto analysis of warranty claims, management assigned a team to solve the 
problem of premature failure of wheel bearings within the warranty period of three years. 
The goal was to reduce the failure rate from 3% to less than 0.3%. Most of the wheel bear- 
ing failures occurred in trucks driven primarily on dirt roads in wet and cold conditions. 
The team used the robustness approach to find a design change to the bearing assembly that 
increased the average failure time. During the investigation, the team discovered the failure 
rate had increased after the removal of a dust shield, recommended by an earlier cost-reduction 
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program. No one had examined the potential costly side effects of removing the dust shield, 
despite a design change protocol that required the assessment of such side effects before 
the change could be implemented. 

 
 
21.3 COMPLETING THE IMPLEMENT AND VALIDATE 

STAGE 

We summarize the key tasks necessary to complete the Implement and Validate Solution 
and Hold the Gains stages of the Statistical Engineering algorithm. We must: 

• Implement the solution (that is, change one or more fixed inputs). 

• Conduct a validation investigation using the original output to show: 

—The problem goal has been met. 
—There are no substantial negative side effects. 

• Establish monitoring and audits to preserve the change, if necessary. 

• Document any changes to the product or process design or to the control plan. 

• Document the lessons learned. 

After completing all these tasks, we can celebrate our success! 
 
 
 
 

Key 
Points 

 

• We need to validate process changes to ensure the long-term reduction of 
process variation. 

• In the solution validation, watch for unexpected negative side effects on other 
output characteristics. 

• To have a lasting impact, the implemented change needs to be made permanent. 
 

 
 
 
 
 
 

Exercises are included on the accompanying CD-ROM 
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