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Case Studies 
 

 

 
A problem well defined is a problem half solved. 

—Charles Kettering, 1876–1958 
 
 
 

e provide three case studies to illustrate the use of the Statistical Engineering 
variation reduction algorithm. We hope that the case studies help you to: 

 
• Better understand the stages of the algorithm and how to move among them. 

• Understand the considerations in the choice of a working approach. 

• Select appropriate investigations and analysis tools in the search for a 
dominant cause. 

• Assess the feasibility of an approach and implement it. 

As W. Edwards Deming somewhat paradoxically said, “You cannot learn by example.” 
We recognize that there are no other processes or problems for which the case studies are 
perfect models. We recommend, when reading the case studies, that you think about where 
your own processes and problems are similar to and different from those in the cases. 

 
 

 
 

 

Statistical Engineering variation reduction algorithm. 

 
Define focused problem 

 
Check the measurement system 

Choose working variation reduction approach 
 

Fix the obvious Feedback control 
Desensitize process Make process robust 
Feedforward control 100% inspection 

 
Change process (or subprocess) center 

Find and verify a dominant 
cause of variation 

Assess feasibility and plan 
implementation of approach 

Implement and validate solution 
and hold the gains 
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Case Study I 
Brake Rotor Balance 

 
 

The value of an idea lies in using it. 

—Thomas Edison, 1847–1931 
 
 

n iron foundry produced veined brake rotors (Figure I.1) that were machined at a 
separate location. The machining plant 100% inspected the rotors for balance and 
welded a weight into the veins if the imbalance was too severe. We call a rotor need- 

ing added weight a balance reject. 
The historic rate of balance rejects was approximately 25%. The foundry initiated the 

project because the reject rate jumped to 50%. This increase in rework coincided with a 
move from a four-cavity to a six-cavity (called a four-gang and six-gang) core mold to 
increase productivity in the foundry. The cores were set in the mold to create the veins 
when the rotor was cast. 

 

 
 

 

Figure I.1 Brake rotor. 
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Figure I.2 Side view of a brake rotor showing veins. 
 

The foundry was convinced that the change to the six-cavity mold was not the cause of the 
increase in balance rejects. Their confidence was based on their previous experience and because 
a full analysis of the six-cavity mold had shown all dimensions well within specification. 

The increased reject rate could not be explained by any other changes made at either the 
foundry or the machining operation. As it stood, each party blamed the other. To address 
the increased rework, the machining operation planned to add another rework station. The 
foundry formed a team with the goal of reducing the reject rate to at most the historical level. 
To determine imbalance, the machining plant measured the center of gravity (a distance and 

direction from the rotor center), which was then translated into a weight (in ounces) and 
orientation needed to balance the rotor. If needed, the weights were welded to the veins on 
the inside of the rotor, as seen in Figure I.2. A balance reject was any rotor needing weight 
greater than 0.5 ounces. To focus the problem, the team selected the balance weight as the 
output. They knew that if they could reduce the weight, they could eliminate the rework, 

regardless of the orientation. 
To establish the baseline in terms of the balance weight, the team selected 300 

machined rotors spread out over the previous week’s production. The data are given in 
brake rotor balance baseline. The baseline histogram and run chart are given in Figure I.3. 
In the baseline, 46% of the rotors required rework. The run chart of the balance weights 
suggests no obvious pattern over time. 
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Figure I.3 Histogram and run chart of balance weights in the baseline investigation. 
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Summarizing the baseline results we have: 
 

Variable N Mean Median TrMean StDev SE Mean 
weight 300 0.6215 0.4700 0.5813 0.5079 0.0293 

 

Variable Minimum Maximum Q1 Q3 
weight 0.0100 3.0900 0.2100 0.9625 

 

There was one outlier in the baseline sample. If we exclude this rotor, the standard 
deviation is reduced slightly to 0.49. Ignoring this casting, the full extent of variation of the 
imbalance weight is about 0 to 2.25. The team set the goal to reduce variation in the bal- 
ance weight so that at least 75% of the rotors had weight less than 0.5. 

The team moved on to the Check the Measurement System stage. They wanted to 
ensure they had a reliable way to measure balance. There were three gages in parallel used 
to measure balance weight. See the process map in Figure I.4. 

For the investigation, the team selected three rotors with initial measured weights of 0.10, 
0.54, and 1.12. They measured the three rotors twice using each of the three gages on three sep- 
arate days. There was little operator effect since the gages were mostly automated. There were 
54 measurements in total. The data are given in the file brake rotor balance measurement. 

We see in Figure I.5 that the measurement system can easily distinguish the three rotors. 
We calculate the summary measures by rotor (part). 

 
Variable rotor N Mean Median TrMean StDev 
weight 1 18 0.1083 0.1150 0.1088 0.0685 

 2 18 0.5028 0.5050 0.4994 0.0697 
 3 18 1.0172 1.0350 1.0175 0.0584 

 

Variable rotor SE Mean Minimum Maximum Q1 Q3 
weight 1 0.0162 -0.0100 0.2200 0.0500 0.1700 

 2 0.0164 0.4000 0.6600 0.4275 0.5600 
 3 0.0138 0.9100 1.1200 0.9700 1.0525 

 

Casting in Foundry Machining

Balance Gauge 3

Balance Gauge 2

Balance Gauge 1

Rework? no

Add Balance
Weight
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Figure I.4 Brake rotor process map. 
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Figure I.5 Brake rotor balance measurement investigation results. 
 

There are no obvious outliers in these data. We estimate the standard deviation of the 
measurement system as 

2 2 20.0685 0.0697 0.0584 0.06
3

+ +
=  

 

The measurement system was judged to be acceptable since this is much less than the over- 
all standard deviation, estimated in the baseline investigation to be 0.51. The discrimination 
ratio D is 

2 20.51 0.06 8.4
0.06

−
=  

 

Next, the team had to select a working approach. They first considered the non-cause- 
based approaches. They ruled out 100% inspection, since that was the current approach 
and was too costly. They also eliminated feedback control, since there is no strong pattern 
in the variation over time in the baseline data and they had no idea of how to adjust the 
weight. Robustness or Move the Process Center (equivalent approaches in this case) were 
possibilities but, without more process knowledge, were not likely to succeed. The team 
decided to search for the dominant cause of variation in the balance weight. 

The team first looked at easily available data to see what causes could be eliminated. 
They recorded, on a defect concentration diagram, the location (in increments of 30°) of the 
welded rework weight for the 140 balance rejects from the baseline investigation. The dots 
on the part schematic in Figure I.6 show the nonsymmetrical pattern of balance weights 
observed. Since the machining process is rotationally symmetric and the casting process is 
oriented, the team eliminated all causes in the machining operation. With this simple inves- 
tigation the team made tremendous progress with little cost and in a short time. 

The team next planned a group comparison. They selected 30 balance rejects (average 
weight 1.02) and 30 balanced brake rotors (average weight 0.15) for the comparison. They 
then measured 26 foundry-determined characteristics on each machined rotor. Note that 
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Figure I.6   Concentration diagram of weight locations. 
 
 

machining destroyed many foundry characteristics. The input characteristics included vein 
thickness at eight different locations (four orientations at inner and outer edges of the 
rotor), three derived thickness variation measures (variation at inner and outer locations, 
and the overall variation), core offset at two orientations, four diameters related to the core 
size, and five hole diameters (on the inner part of the rotor, see Figure I.1). The data are 
given in the file brake rotor balance comparison. 

The team identified two input characteristics, thickness variation and core position (off- 
set), that were substantially different for balanced and unbalanced rotors. See Figure I.7. The 
results for thickness variation were more compelling than for core position. However, based on 
engineering knowledge, both inputs were plausible dominant causes of imbalance variation. 

The team decided to verify these suspects hoping that they could then reformulate the 
problem, since the suspects could be measured in the foundry. This would save time and 
effort in future investigations since they would no longer need to trace rotors between the 
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Figure I.7 Plot of thickness variation and offset 1 in balanced and unbalanced rotors. 
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Table I.1  Brake rotor verification experiment plan and results. 
 

 

Treatment 

 

Tooling 
Core 

position 
Thickness 
variation 

 

Run order 
Average 

balance weight 

1 4-gang Offset 30-thousandths 8 0.56 

2 4-gang Offset Nominal 1 0.17 

3 4-gang Nominal 30-thousandths 3 0.44 

4 4-gang Nominal Nominal 7 0.08 

5 6-gang Offset 30-thousandths 2 1.52 

6 6-gang Offset Nominal 5 0.37 

7 6-gang Nominal 30-thousandths 4 1.34 

8 6-gang Nominal Nominal 6 0.03 
 
 

foundry and the machining operation. They planned and conducted a verification experi- 
ment to confirm that core thickness variation and core position were substantive causes of 
the balance weight variation and that the six-cavity mold was not. They used two levels for 
each input and a full factorial design. The team selected the nonnominal levels for core 
position and thickness variation at the high end of their normal range of variation. We give 
the eight treatments and input levels in Table I.1. For each run, they planned to produce eight 
castings. The order of the treatments was randomized. 

The 64 experimental castings were tagged and shipped to the machining plant to be 
processed and measured. We give the data in the file brake rotor balance verification and 
the average weight over the eight castings for each run in Table I.1. 

We plot the weights by treatment in Figure I.8. We see that some treatments have very 
little variation and result in a low average weight. We also see roughly the full extent of the 
variation in weight given by the dashed line on Figure I.8. 
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Figure I.8 Plot of weight by treatment. 
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Figure I.9 Pareto chart of the effects for brake rotor verification experiment. 
 

From the Pareto plot of the effects, given in Figure I.9, we see the effect of core posi- 
tion is small, so we eliminate it as a suspect. Since the tooling and thickness variation have 
a relatively large interaction, we look at the effect of these two suspects simultaneously. 

We give the main and interaction effects plots in figures I.10 and I.11, respectively. 
From the interaction plot, the team concluded that low thickness variation using the 

four-cavity mold produced the optimal results (the weights required were so small that the 
balance specification was met without rework). Thus, the dominant cause of the imbalance 
problem was in the core molding process. 

This search for the dominant cause is summarized in the diagnostic tree shown in 
Figure I.12. 

The team made the obvious fix and recommended that the foundry go back to the orig- 
inal four-cavity core mold. When this change was implemented, the rate of balance rejects 
immediately dropped to its historical levels. The team had met the original project goal. 

The major lesson learned in the project was the effect of the thickness variation on the 
balance weight. The verification experiment showed that thickness variation in the cores was 
a dominant cause of balance weight variation in the original process that used the four-cavity 
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Figure I.10 Main effects plot for brake rotor verification experiment. 
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Figure I.11 Interaction plot for brake rotor verification experiment. 
 

mold. The team was puzzled about the interaction between the thickness variation and the 
number of cavities in the mold. Knowledge of a dominant cause provided the opportunity to 
improve the process further. There was no immediately known method for adjusting the core- 
making process to reduce thickness variation. The team considered looking for an adjuster in 
the core-making process but rejected this approach since they did not expect to be successful. 

 
 

 
 

 

Figure I.12 Summary of the method of elimination for brake rotor example. 
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The team had the opportunity to implement a new core-making process for the veined 
rotor. The equipment was already available in the plant but not in use. The team knew that 
the cold box process was dimensionally stable, and they expected much less thickness vari- 
ation with this process. This is the Fix the Obvious approach. With the implementation of 
the cold box method, the process was greatly improved. Over the next four months the rate 
of balance rejects dropped to 0.2%, a large reduction from the 50% at the start of the project. 
The machining plant eliminated the expensive rework stations and scrapped the few bal- 
ance rejects in the new process. 

 
Highlights 

Some strengths and weaknesses of this case are: 

• The use of the available data together with the knowledge of the symmetry of 
the machining operation to eliminate all causes in the machining plant. 

• In the group comparison, the team could have selected two smaller sets of 
rotors that were more extreme with respect to the balance weights. 

• The carefully planned and conducted verification experiment. 
• The application of the knowledge gained about thickness variation (the dominant 

cause) to select the cold box process. 
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Case Study II 
Rod Thickness 

 
 

The ancestor of every action is a thought. 

—Ralph Waldo Emerson, 1803–1882 
 
 

plant manufactured approximately 12,000 connecting rods per day for use in an 
engine assembled in the plant. The rod, illustrated in Figure II.1, connects the piston 
(at the small or pin end of the rod) to the crankshaft (at the large or crank end of the rod). 

The plant received forged blanks and machined the rods in a large number of process steps. 
Management identified the rod line for a variation reduction project because the overall 

scrap cost was greater than budget. The yearly scrap cost was in excess of $400,000, and the scrap 
rate was 3.2% over the previous four months. Management set a goal to reduce the scrap rate 
to 1.6% in its annual business plan. The rod line production manager assigned a team to the 

project. 
Looking at scrap records, the team found that scrap occurred at several stages in the process 

and for several reasons. To focus the problem, they used Pareto analysis on the records 
for one month. The results, in Figure II.2, showed that 65% of the scrap occurred at a 
grinding operation. At this operation, the team discovered that about 90% of the scrap was 
due to rods with their crank end thickness less than specification. The team focused their 
attention on reducing variation in rod thickness. 

 

 
 

 

Figure II.1 A connecting rod. 
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Figure II.2 Pareto chart for scrap by operation for the rod line. 
 
 

At the grinder, the final thickness of the rod was set in a two-pass operation. An oper- 
ator loaded the parts into the machine. In the first pass, one side of the rod was ground in 
three steps. The rod was then turned over by the machine operator, and the second side was 
ground. The grinder had a rotary table with 20 pallets that passed under four different 
grinding wheels. An internal control system automatically adjusted the grinding wheels 
based on thickness measurements taken by a series of gages internal to the grinder. 

After grinding, an in-line gage measured the thickness of every rod at four positions 
(given by the white circles on the crank end of the rod, also faintly numbered 1 through 4, 
as shown on Figure II.1). The specifications were 0.91 to 0.96 inches at each location. 
The gage automatically rejected to a rework station a rod with any of the four thickness 
measurements not meeting the specification. At the rework station, an operator remeasured 
the rejects using a different gage and scrapped undersized rods. 

The rod line ran on three shifts, five days per week. To establish the baseline, the team 
sampled 200 rods chosen in two batches of 20 rods for each of five days on the day shift 
only. They recorded the thickness measurements for the four positions using the in-line 
gage that did not normally store the data. We give the data in the file rod thickness baseline. 
Thickness is given as a deviation from 0.9 in thousandths of an inch. 

Figure II.3 gives a histogram of thickness, where the dashed vertical lines are the 
specification limits. Of the 200 rods, 10 rods had thickness values less than the lower 
specification limit for at least one of the positions. This was somewhat higher than expected, 
given the historical scrap rate. There are no obvious outliers. A numerical summary of the 
baseline data (across all positions) is: 

 
Variable N Mean Median TrMean StDev SE Mean 
thickness 800 34.575 36.000 34.840 11.023 0.390 

Variable 
thickness 

Minimum 
2.000 

Maximum 
59.000 

Q1 
28.000 

Q3 
43.000 
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Figure II.3 Baseline histogram of rod thickness (dashed vertical lines give the specification 
limits). 

 
The team set the objective to produce all rods within the thickness specification. If this 

ambitious goal could be achieved, they would eliminate 90% of the scrap at the grinder or 
58% of the total rod line scrap, hence meeting the project goal. 

The process was well centered, so to meet the goal the team needed to reduce the standard 
deviation to 8.5 from around 11 thousandths of an inch, while keeping the process centered 
on target. The full extent of the thickness variation was 2 to 59 thousandths. In Figure II.4 
we show the baseline data over time (batch), which suggests there was no systematic drift 
in the process. 

The next step was to assess the measurement system. The in-line gage used four sets of 
transducers to measure rod thickness at the four positions. In effect there were four gages. 
The team selected three rods to roughly cover the full extent of the thickness variation. 

The team was concerned about a relative bias among the four gages. Since it was 
impossible to measure the same position on the different gages, they sent the three rods to 

 
 

60 
 
 

50 
 
 

40 
 

30 
 
 

20 
 
 

10 
 

0 
 

1 2 3 4 5 

 
 

6 7 8 

 
 

9 10 

Batch 
 

 

Figure II.4 Box plot of rod thickness by batch for baseline investigation (dashed horizontal 
lines give the specification limits). 
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Table II.1  True values of rod thickness by position. 
 

Rod Position 1 Position 2 Position 3 Position 4 

1 54.6 44.7 32.4 59.0 

2 22.6 33.8 11.7 22.9 

3 38.3 40.6 21.4 41.8 

 
a precision laboratory to have the thicknesses determined with little measurement bias and 
variation. The precision lab values are given in Table II.1. 

The team chose two operators, one from the day shift and one on the afternoon shift. 
For three days, each operator measured the three rods three times at each of the four posi- 
tions. In total, there were 216 measurements, 56 per gage. Since we know the true values, 
we give the measurement errors in the file rod thickness measurement. 

A summary of the measurement errors for each position (gage) are: 
 

Variable position N Mean Median TrMean StDev 
error 1 54 0.037 0.400 0.021 1.564 

 2 54 –0.033 0.250 –0.013 1.384 
 3 54 –0.019 –0.400 –0.013 1.326 
 4 54 0.081 0.100 0.075 1.775 

 

Variable position SE Mean Minimum Maximum Q1 Q3 
error 1 0.213 –3.300 5.400 –0.775 1.400 

 2 0.188 –3.700 3.300 –0.800 0.400 
 3 0.180 –3.400 2.600 –0.700 0.775 
 4 0.242 –3.800 4.000 –1.000 1.125 

 

There is no evidence of substantial bias in any of the four gages, since the average errors 
are close to zero. 

Because there is no relative bias among the gages and we have the measurement errors, 
we estimate the measurement system variation by the standard deviation of the 216 meas- 
urement errors. As given, we obtain the estimate 1.512. 

 
Variable N Mean Median TrMean StDev SE Mean 
error 216 0.017 0.200 0.012 1.512 0.103 

 

Variable Minimum Maximum Q1 Q3 
error –3.800 5.400 –0.800 1.100 

 

The baseline variation was 11.023. We can estimate the process variation, using Equa- 
tion (7.2), by  2 211.023 1.512 10.92− =  and the discrimination ratio as D = 10.92 ÷ 1.512 = 7.2. 
The team decided that the in-line gage was not a dominant cause of the variation and was 
adequate to move to the next stage of the Statistical Engineering algorithm. 
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Figure II.5 Box plot of thickness by position from the baseline data. 
 

When considering the choice of a working variation reduction approach, the team 
quickly rejected the approaches that did not require knowledge of a dominant cause. The 
process was already well targeted, there was no evidence of an exploitable time pattern in 
thickness, 100% inspection was already present, and making the process robust seemed 
difficult. The team decided to search for a dominant cause. 

The team first looked at the available data from the baseline investigation to see what 
family of causes could be eliminated. We show a box plot of thickness by position in 
Figure II.5. There is a difference between position 3 and the other positions. However, the 
variation within positions was close to the full extent of variation, so position is not the dom- 
inant cause. All but one of the scrapped rods in the baseline sample was undersized at posi- 
tion 3. The team did not know of an obvious fix to move the thickness center for position 3. 

The team decided to carry out a multivari investigation to compare pallet-to-pallet, 
position-to-position, day-to-day, and part-to-part families. They planned to select three 
consecutive rods from six different pallets (pallets occur in pairs, so three pairs of pallets 
were chosen) on four different days. They measured thickness at all four positions to con- 
firm the findings from the baseline investigation. In total, they sampled 72 rods and made 

288 measurements. The data are given in the file rod thickness multivari. 
We show the results of the multivari analysis for the pallet-to-pallet, position-to-position, 

and day-to-day families in Figure II.6. We see that none of these families is home to a domi- 
nant cause, although again the thickness was lowest at position 3. To examine the part-to-part 
family, we form a new input group corresponding to all 96 combinations of day, position, and 
pallet. We use ANOVA to isolate the variation within the groups. The results are: 

 
Analysis of Variance for thickness 

 

Source DF SS MS F P 
group 95 14444.32 152.05 3.93   0.000 
Error 192 7433.33 38.72  
Total 287 21877.65   
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We estimate the within group variation due to causes in the part-to-part family as 

38.72 = 6.22, a substantial component of the baseline variation 11.023. The team concluded: 

• There was substantial part-to-part variation within the same pallet, position, 
and day. 

• Position 3 was systematically thinner than the other positions. 

However, later, when the team examined the histogram of the multivari data in Figure II.6, 
they noticed that the range of variation in thickness from the multivari did not cover the full 
extent of variation. There were no undersized rods with thickness values below the lower 
specification limit of 10. As a result, they decided that their conclusions from the multivari 
were premature. 

This was an unexpected result. The plan for the multivari investigation matched the 
baseline investigation quite closely. By sampling rods over a number of days, the team had 
hoped that they would observe undersized rods. The lack of undersized rods suggested that 
either the dominant cause acts in pallets not chosen for the multivari or that it acts only 
occasionally in time. Based on this thinking, the team decided to conduct another multivari 
investigation. 
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Figure II.6 Summary of the data from the first multivari investigation (vertical dashed lines 
give the full extent of variation). 
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In the second multivari, they planned to sample three consecutive rods from a different 
set of six pallets than those used in the first multivari investigation. This time they repeated 
the sampling scheme five times within a single shift. This shorter time frame seemed suffi- 
cient from the baseline results, as shown in Figure II.4. In total, the team sampled 90 rods 
and made 360 measurements. The data are given in the file rod thickness multivari2. 

The team first checked that their new sampling plan generated the full extent of thick- 
ness variation. A histogram of the new multivari data, shown in Figure II.7, shows that the 
full extent of variation was captured. The dominant cause of thickness variation must have 
acted during the course of the investigation. 

We can see the effects of the families of variation for time, pallet, and position in the 
one-input-at-a-time multivari charts in Figure II.8. We see that a dominant cause of thick- 
ness variation is acting time to time. Within each time period, the variation is substantially 
less than the full extent of variation. All of the undersized rods occur at time 3. The differ- 
ences among the positions is smaller than previously. 

We expect causes in the rod-to-rod (that is part-to-part) family to act haphazardly. To 
examine the rod-to-rod family, we define a new input group that uniquely numbers the 120 
combinations of position, time, and pallet. The within-group standard deviation (Pooled 
StDev in the MINITAB one-way ANOVA) is 4.29. The rod-to-rod family is not dominant. 
During the multivari investigation, 40 undersized rods were produced in a matter of two 

minutes at time 3. The tool setter suspected that there was a problem with the feedback 
control scheme that automatically adjusted the grinding wheels. For the finishing wheel, 

the controller used the measurements from an internal gage and the following rules: 

• Measure every part at all four positions. 

• If the thickness at any position for two consecutive parts exceeds 50-thousandths 
of an inch, lower the finishing grinding wheel for three seconds at a fixed rate. 

• Ignore the measurements from the next three parts until the adjustment has 
taken effect. 
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Figure II.7 Histogram of data from the second multivari investigation. 
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Figure II.8 Multivari charts using data from the second multivari investigation. 
 

The last rule was necessary because of the time delay between the grinding by the fin- 
ishing wheel and the measurement of thickness by the internal gage. The rule was based on 
the feedback timer and did not count parts. Upon closer inspection, the team discovered 
that, occasionally, the last rod ground before compensation was treated as the first rod after 
the wheel was lowered, thereby fooling the equipment into thinking a second compensation 
was needed. Combined with the systematic difference among the positions, the double 
compensation was a dominant cause of undersized rods. 

The team adopted the Fix the Obvious approach. They adjusted the logic of the controller to 
count the parts processed after compensation instead of using the timer. This change prevented 
the double compensation. The team also looked for ways to adjust the process to better center the 
four positions. They initiated maintenance on the alignment of the grinding wheels to reduce the 
position-to-position differences. Since they expected the equipment to deteriorate over time, 
they set up a monitoring procedure to detect when the position-to-position differences became 
large. Each day, the operator recorded the thicknesses for five consecutive parts and plotted the 
position averages on a run chart. The process engineer checked the chart on a regular basis to see 
if there were systematic differences among the four positions. 

In the validation stage, the team assessed the effect of the process changes by compar- 
ing performance before and after the changes. We give a histogram of thickness values 
observed when the plan for the original baseline investigation was repeated in Figure II.9. 
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Figure II.9 Histogram of rod thickness from validation investigation. 
 
 

The data are given in the file rod thickness validation. No undersized rods were observed 
in the validation investigation. 

The scrap rate substantially decreased. In the first month after eliminating the double 
compensation, the scrap rate was 1.7%. The project team fell short of the initial goal, but 
the project was judged to be successful by the rod line management. 

 
Highlights 

Some strengths and weaknesses of this case are: 

• The team did a good job of focusing the problem, linking the problem goal 
“eliminate undersized rods” to the project goal “reduce rod line scrap by at 
least half.” 

• The team adopted a good solution to the assessment of the four gages in the 
measurement system investigation. In this case, they could not measure the same 
part/position on each gage, so there was no way to tell if there were relative biases 
among the gages without measuring rods with known thicknesses. Note that a 
relative bias could have explained why the average thickness for position 3 was 
smaller than the other positions. 

• The team did not make the best use of the information from the baseline 
investigation. Given that the full extent of thickness variation occurred within a 
single day (actually a shift), they should have planned the first multivari within 
a single shift. The time-to-time variation is captured by repeatedly sampling 
within the shift, as in the second multivari investigation. 

• The team made the mistake of not initially checking that the first multivari 
investigation captured the full extent of thickness variation. 

• The team was wise to change the control plan to monitor the process for 
position-to-position differences, since these were expected to recur, given the 
nature of the grinding process. 
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Case Study III 
Crankshaft Main Diameter 

 
 
 
 
 
 

The true creator is necessity, which is the mother of our invention. 

—Plato, 427–347 B.C. 
 
 

n engine plant machined approximately 1500 V8 crankshafts per day on three shifts. 
There was 100% inspection at an automated final gage that measured more than 60 
characteristics to ensure that the customer, the engine assembly operation, received 

a high-quality product. We show a schematic of the crankshaft in Figure III.1. 
At the beginning of this project, the monthly scrap rate ranged between 6 and 8%, 

averaging 7.2% over the previous four months. The first-time-through rate, the ratio of the 
number of parts that were accepted by the final gage to the total number of parts 
processed, was highly variable, and sometimes as low as 20%. Parts rejected at the final 
gage were scrapped or reworked and remeasured using an off-line gage. 

The goals of this project were to reduce the overall scrap rate to 4.5% or less and 
increase the first-time-through rate at the final gage to at least 75%. Management hoped to 
achieve these goals without any substantial capital expenditure. 

 

 
Mains 

 
 

Figure III.1 V8 crankshaft showing five mains. 
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The team began by determining a more specific goal that could support the overall 
project goal. The reason was recorded for every crankshaft rejected by the final gage. The 
team used Pareto analysis to determine that about 85% of rejects and 73% of the scrap were 
related to the main diameters. The five main diameters are numbered in Figure III.1. 

The final gage measured the diameters at three positions—front, center, and rear—on 
each of the five mains. The specification limits for diameter were ±4.0 thousandths of an 
inch measured from nominal. The rejects related to main diameter were due to undersized, 
oversized, and excess taper from the front to the rear of the main. A crankshaft with any 
main diameter less than –4.0 was scrapped. Taper was the difference between front and rear 
diameters on each main. The taper specifications were ±2.0 thousandths of an inch. Most 
parts rejected for taper could be reworked. 

To achieve the project goal, the team decided to concentrate efforts on reducing varia- 
tion in main diameter to eliminate scrap due to undersized diameters and to reduce rework 
due to taper and oversized diameters. 

The team extracted baseline data on main journal diameters for 2000 crankshafts over 
four days (500 per day selected haphazardly throughout the day) from the final gage. The 
data are given in the file crankshaft main diameter baseline. Because of the large number 
of measurements, the data are stored in three different formats on the same worksheet: 

• In the first 21 columns by crankshaft 

• In the next three columns by individual measurements for diameter 

• In the last two columns by individual measurements for taper 

In the baseline investigation, the scrap rate was 6.9%, with 53% rework, of which 40% 
was due to excess taper. We show the histograms of all measured diameters and calculated 
taper values for the 2000 crankshafts in Figure III.2. 
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Figure III.2 Baseline histograms of main diameters and taper over all mains and positions 
(dashed vertical lines show the specification limits). 
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There are many diameters and taper values outside the specification limits. Numerical 
summaries of the baseline data are: 

 
Variable N Mean Median TrMean StDev SE Mean 
diameter 30000 0.8810 0.9037 0.9005 1.9933 0.0115 
taper 10000 0.0619 0.0686 0.0652 1.0367 0.0104 

 

Variable Minimum Maximum Q1 Q3 
diameter –6.9285 8.1401 –0.5168 2.3502 
taper –3.9438 3.5072 –0.6595 0.7870 

 

The team saw that if the process was centered on target, they needed to reduce the standard 
deviation of diameter to less than 1.30 to meet their goal of producing no diameters out of 
specification. The full extent of diameter variation was about –5.1 to 6.9 (0.88 ±3*1.99) 
thousandths of an inch. 

There are so many diameter observations that it is difficult to look for patterns over 
time. We give the box plot of diameter by day in Figure III.3. The team also looked at plots 
of diameter over time for each of the individual positions. There are no day-to-day patterns. 
The next step was to assess the final measurement system. There were 15 different gages and 

the team could not measure the same part on each of them; for example, they could not 
measure the number 1 main front diameter on the number 3 rear gage. These no-contact 
gages used a common air pressure system. The team selected six different crankshafts to be 
measured three times each on three days. The team chose six crankshafts to roughly cover 
the full extent of variation because here they were simultaneously investigating 15 different 
measurement systems. It was not worth the effort to find three crankshafts that gave the full 
extent of diameter variation for all 15 positions simultaneously. There was no operator effect 
because the measurement process was automated. There were a total of 54 measurements on 
the front, center, and rear positions for each of the five mains. The data are given in the file 

crankshaft main diameter measurement. 
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Figure III.3 Box plots of final diameter by day. 
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The estimates of the measurement variation (standard deviation) of the 15 gages ranged 
from 0.28 to 1.06. The MINITAB ANOVA results for the two extreme cases are: 

 
Analysis of Variance for 1rear 
Source DF SS MS F P 

 

crankshaft 5 125.43 25.09 22.37 0.000 
Error 48 53.82 1.12  
Total 53 179.25   

    Individual 95% CIs For Mean 
    Based on Pooled StDev 
Level N Mean StDev ---+---------+---------+---------+--- 
1 9 4.450 0.990 (----*---) 
2 9 1.697 1.148 (----*---) 
3 9 0.265 1.035 (----*---) 
4 9 4.326 1.055 (---*---) 
5 9 2.237 1.050 (---*---) 
6 9 3.763 1.070 (----*---) 

---+---------+---------+---------+--- 
Pooled StDev = 1.059 0.0 1.6 3.2 4.8 

 

Analysis of Variance for 4front  
Source DF SS MS F P 
crankshaft    5 59.9397 11.9879 153.84 0.000 
Error 48 3.7403 0.0779 
Total 53 63.6800 

 
 

Individual 95% CIs For Mean 
Based on Pooled StDev 

Level N  Mean StDev    -+---------+---------+---------+----- 1 9
 -0.1608 0.2674 (–*) 
2 9 –2.1253 0.1886 (*–) 
3 9 –0.8184 0.2653 (*–) 
4 9 –1.4794 0.3258 (–*) 
5 9 –1.9434 0.3204 (–*) 
6 9 –3.4972 0.2850    (–*) 

-+---------+---------+---------+----- 
Pooled StDev = 0.2791 –3.6 –2.4 –1.2 0.0 

 
Because there were 15 gages, there may have been relative biases among the gages. 

These biases would contribute to the variation in diameter across all mains as determined 
in the baseline. We cannot assess these biases with the data from the measurement sys- 
tem investigation. The team was concerned about how to determine if the measurement 
system was a dominant cause of the overall variation. They looked at the box plot of 
diameter by position from the baseline investigation, given in Figure III.4, and noted that 
there were systematic position-to-position differences. 

These differences could be due to the process or the gages. The team decided to assess each 
gage against the baseline variation within its own position. We give the results in Table III.1. 
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Figure III.4 Diameter by position from baseline data. 
 
 
 

 

Table III.1 Measurement discrimination ratios by position. 
 

 

Position 
Baseline standard 

deviation 
Measurement 

system variation 

 

Discrimination ratio 

1 center 1.17 0.96 0.71 

1 front 1.20 0.97 0.72 

1 rear 1.18 1.06 0.51 

2 center 1.65 0.86 1.65 

2 front 1.64 0.76 1.89 

2 rear 1.65 0.83 1.70 

3 center 1.80 0.86 1.84 

3 front 1.78 0.92 1.67 

3 rear 1.78 0.85 1.84 

4 center 1.78 0.28 6.18 

4 front 1.77 0.33 5.28 

4 rear 1.78 0.29 5.95 

5 center 1.46 0.69 1.88 

5 front 1.45 0.56 2.37 

5 rear 1.45 0.74 1.69 
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For some positions, the measurement system was a dominant cause of the variation. 
This was a shocking discovery, since the gage was thought to be reliable based on the 
required gage R&R investigations. The team needed to improve the measurement system 
immediately. The small discrimination ratios helped to explain why some operators remea- 
sured scrapped crankshafts a second time. Given the observed measurement variation, it 
was not surprising that these crankshafts were sometimes found to be acceptable. Surprisingly, 
no one found the need to remeasure crankshafts that were first time passes through the 
measurement system. 

To improve the final gage, the team decided to look for a dominant cause of measure- 
ment variation. They started with the existing data from the measurement investigation. 
They examined the data from positions 4 front (one of the best gages) and 1 rear (one of the 
worst) in more detail. In Figure III.5, we give plots of the estimated measurement errors 
(measurements minus the position average) by day. We see for 1 rear that the measurement 
error is substantially different from one day to the next. The dominant cause of the meas- 
urement variation for position 1 rear acted in the day-to-day family. 

To explore this behavior further, the team measured the same crankshaft once per day 
for 19 days. The data are given in the file crankshaft main diameter measurement stability. 
The results were striking and surprising. We present results only for the front position for 
all five mains here. The results were similar for the other positions. In Figure III.6, and in 
the subsequent numerical results, we see that the final gage was unstable. The day-to-day 
variation in the gage was much greater than expected based on the existing short-term 
R&R results. 

 
Variable N Mean Median TrMean StDev SE Mean 
1front 19 3.380 3.381 3.351 0.943 0.216 
2front 19 1.599 1.309 1.583 1.255 0.288 
3front 19 –1.319 –1.205 –1.305 0.778 0.178 
4front 19 –1.553 –1.814 –1.573 0.712 0.163 
5front 19 2.790 2.721 2.794 0.794 0.182 
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Figure III.5 Diameter minus main average by day. 
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Variable Minimum Maximum Q1 Q3 
1front 1.946 5.301 2.656 3.985 
2front –0.428 3.915 0.730 2.511 
3front –2.905 0.018 –1.827 –0.730 
4front –2.402 –0.355 –2.188 –0.858 
5front 1.438 4.071 2.184 3.485 

 

The team decided to address the measurement system instability with feedback control. 
The controller was feasible because: 

• Quick adjustment of the measurement system was available by changing an offset. 

• The shifts in the measurement process were persistent, as seen in Figure III.6. 

The team developed a procedure to monitor the stability of the gages and a reaction plan. 
Each day, an operator measured a reference part and plotted the results on a control chart, 
one for each of the 15 positions. The centerlines and adjustment limits were based on the 
within-day measurement variation (that is, short-term variation) from the initial measure- 
ment investigation. If a plotted point fell outside the control (adjustment) limits, the gage 
was cleaned and remastered. The control charts provide an ongoing record of the perfor- 
mance of the gages. If the gages performed consistently over time on the reference part, the 
team had confidence in using data from the gages to make process decisions. After the feed- 
back system was implemented, the team validated the improvement by repeating the initial 
measurement investigation. They found that discrimination ratios, calculated as  in 
Table III.1, all exceeded 3.0. 

The team was ready to proceed to the next step of the Statistical Engineering algorithm, 
confident in the measurement system and knowing they had already improved the process 
substantially. They were tracking the first-time-through rate at the final gage and saw a 
marked increase. The team considered the possible variation reduction approaches and 
decided to look for a dominant cause of the variation in main diameter. 
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Figure III.6 Front position diameter for the five mains when measuring the same 
crankshaft. 
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Because of the faulty measurement system, they debated whether they should repeat 
the baseline investigation. They decided to proceed without doing so. They continued to 
use the original full extent of variation, –5.1 to 6.9, recognizing that this was likely too 
wide given the improvements they had made. 

We show a simplified flowchart of the crankshaft production system in Figure III.7, 
highlighting the operations that affected the main diameters. The team believed initially 
that most of the variation in main diameters at the final gage was caused by differences in 
the four journal grinders. There were little data to support this belief. 

The team decided to explore the families of variation defined by the process steps using 
a variation transmission investigation. The main diameters were measured with an in-process 
contact gage between the grinding and lapping operations. The team planned to measure a 
sample of parts with the in-process gage and then track the parts through the process and 
remeasure them at the final gage. They could use this variation transmission investigation to 
eliminate the lapper or the upstream process as the home of the dominant cause. 

Based on their experience with the final gage, the team decided to next investigate the 
in-process gage. They carried out an investigation of this system with the same plan used 
for the final gage. We do not give the data here. They found the measurement variation to 
be relatively small (estimated standard deviation 0.31) and no evidence of instability. 

The team knew that both the in-process and final measurement systems were used in 
an informal way to control the grinders. For that reason, the team next checked the relative 
bias of the two systems. They measured six crankshafts on the final gage. Then, they 
returned the parts to the in-process gage and remeasured the diameter. Using the same six 
parts, they repeated this process two more times. In the data, the intermediate (in-process) 
diameters have been increased by 2.25 units to reflect the fact that the nominal diameter is 
different at the two gages by 2.25 thousandths. The data are given in the file crankshaft 
main diameter relative bias. 
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Figure III.7 Crankshaft production process map. 
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Figure III.8 Scatter plot of final versus adjusted intermediate diameter for the first main. 
 
 

From the scatter plot for the first main shown in Figure III.8, we see that there is a bias 
between the two gages. There are similar patterns on the other mains. The team changed 
some of the offsets on the in-process gage to remove the bias. 

The team now had confidence in the two measurement systems and recognized that 
they had made another improvement in the process. The first-time-through rate increased 
again. They proceeded with the planned variation transmission investigation to separate the 
effects of the lapper from those of upstream operations. 

The team selected four crankshafts from each of the four grinders on four different 
days. Using the two gages, they measured the diameters of the 64 parts before and after lapping. 
The data are given in the file crankshaft main diameter variation transmission. 

The final diameters varied between –4.3 and 5.5. This is somewhat less than the full 
extent of variation but, given that the process had been improved, the team was confident 
that the dominant cause had acted during the investigation. 

In Figure III.9, we plot the final versus intermediate (in-process) diameters across all 
mains and positions. We see that that the intermediate diameter is a dominant cause of vari- 
ation in the final diameter. The lapper transmits the upstream variation. 

The team was not surprised because the lapper was a so-called dumb machine. It had 
no gauging or compensation and lapped for a fixed number of rotations on each main. The 
team expected the lapper to remove about 2.25 thousandths from the diameter. A numerical 
summary of the difference in diameters is: 

 
Variable N Mean Median TrMean StDev SE Mean 
diameter 960 –4.1755 –4.1000 –4.1815 0.5121 0.0165 
difference       

 

Variable Minimum Maximum Q1 Q3 
diameter –5.6000 –2.4000 –4.5000 –3.9000 
difference     
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Figure III.9 Final diameter versus intermediate diameter over all positions. 
 
 

Because of the offset between the two gages, the average change in diameter is –4.17 
+ 2.25 = –1.92, close to what was expected. The standard deviation of the change in diameter, 
0.51, is small. 

In Figure III.10, we look at the change in diameter by main and, more critically, by 
position within main. We see that the lapper removed systematically different amounts of 
material within mains, especially for mains 2, 4, and 5. The lapper is home to a dominant 
cause of the taper variation. 

All parts met the taper specification ±2.0 thousandths before the lapping but not after. 
A summary of the before and after lapper taper is: 

 
Variable N Mean Median TrMean StDev SE Mean 
int. taper 320 –0.2440 –0.1800 –0.2313 0.7449 0.0416 
final taper 320 0.1996 0.2900 0.2162 0.9421 0.0527 

 

Variable Minimum Maximum Q1 Q3 
Int. taper –1.9600 1.2500 –0.8675 0.3900 
final taper –2.6500 2.3000 –0.5650 0.9375 

 

Using the results from Figure III.10, the team arranged for maintenance on the lapper 
to balance all shoes so that, on average, the change in diameter was consistent from main 
to main and from position to position within each main. They also changed the control plan 
for the lapper. Once per day, an operator measured a crankshaft before and after lapping, 
using the final gage, and plotted the change in taper for each main on a control chart. Any 
changes in lapper performance could be quickly identified and remedied as required. 

The team next returned to the problem of excess diameter variation. They had identified 
the intermediate diameter as a dominant cause of the variation. The dominant cause was not 
verified since the conclusion made physical sense and seemed clear-cut. To select a working 
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Figure III.10   Diameter difference (final minus intermediate) by position. 
 
 

approach, the team briefly considered using the lapper to adjust the final diameter based on 
the observed intermediate diameter. They rejected feedforward control because of the cost. 
They would need a smart lapper that could remove a varying amount of material on each main 
after receiving input from the intermediate gage. They also rejected desensitization, since 
they did not believe any change to the lapper settings could mitigate the variation in the inter- 
mediate diameter. They decided to reformulate the problem in terms of the dominant cause. 

The team used the data from the variation transmission investigation to set the baseline 
for the intermediate diameter. We give a numerical summary as follows and the histogram 
in Figure III.11. 
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Figure III.11 Histogram of intermediate diameter (dashed lines are the specification 
limits ±4.0). 
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Variable N Mean Median TrMean StDev SE Mean 
intermediate 960 1.0716 1.1000 1.0802 1.6808 0.0542 
diameter       

 

Variable Minimum Maximum Q1 Q3 
intermediate –4.2000 5.5000 –0.1000 2.2000 
diameter     

 

The team made several observations: 

• The within-process specification limits ±4.0 thousandths were the same as the 
final diameter specifications. There was no allowance for the addition of any 
variation at the lapper. 

• The grinder operators ran the process on the high side to avoid scrap at the 
intermediate gage. 

• The baseline standard deviation at the intermediate grinder was 1.68 and the full 
extent of variation of the intermediate diameter was –4.2 to 5.5 thousandths. 

To set the goal for the reformulated problem, the team used the data from the variation 
transmission investigation to fit a regression model relating the final diameter to the inter- 
mediate diameter across all mains. From a portion of the MINITAB results, we have 

 
 

The regression equation is 
final  diameter  =  –0.145  +  0.968  intermediate  diameter 

 

Predictor Coef SE Coef T P 
Constant –0.14496 0.01953 –7.42 0.000 
intermed 0.968367 0.009803 98.79 0.000 

 

S  =  0.5102 R-Sq = 91.1% R-Sq(adj) = 91.1% 
 

Analysis of Variance 
 

Source DF SS MS F P 
Regression 1 2540.6 2540.6 9758.54 0.000 
Residual Error 958 249.4 0.3   
Total 959 2790.0    

 
The residual standard deviation is 0.51. If we could hold the intermediate diameter 

fixed, this is the estimate of the standard deviation in the final diameter. The slope of the 
regression equation is 0.968. This gives the expected change in average final diameter for 
each unit change in intermediate diameter. 



Crankshaft Main Diameter CD–35 
 

 
The original goal was to reduce the standard deviation of the final diameter to about 

1.30. Using the formula from Chapter 2, we have the equation for the required standard 
deviation at the intermediate diameter 

 

( )22 21.30 0.986 required stdev 0.51= +  
 

Solving, we find that the required standard deviation for the intermediate diameter is 1.24. The 
team set a goal to reduce the standard deviation of the intermediate diameters to 1.25 or less. 

The team had already completed the Check the Measurement System stage for the in- 
process gage, so they proceeded to consider a working approach. The team expected that 
they could find a dominant cause of the variation. However, they first considered tighten- 
ing the within-process specifications, that is, using 100% inspection. The current practice 
was to scrap parts if any diameter was less than –4.5 and to process all others with the hope 
that the lapper might bring the part back into specification. The team considered reducing 
the specifications to ±3.0 and insisting that any part outside of specification be scrapped or 
reworked at the intermediate gage. The team believed that the operators at the intermediate 
gage and the grinding process could meet these specifications on an ongoing basis. The 
suggestion was met with hostile resistance from the operators. Without further variation 
reduction effort, the team saw that by tightening the specifications, they would transfer the scrap 
from the final gage to the intermediate gage with little savings. 

The team next considered feedback control. In the current informal system, each of the four 
grinder operators used their judgment plus the data from the intermediate gage. The final 
gage operators also informed the grinder operators when there were a large number of 
crankshafts out of specification. The team suspected that grinder adjustments were made 
only when scrap parts were produced. 

The operator could quickly make an adjustment that affected all mains simultaneously 
but required the help of a tool setter and considerable downtime to adjust the diameter for 
a single main. The team decided to adopt feedback control as a working approach and to 
investigate further how the diameters varied over time and position. 

Since taper at the intermediate gage was small and the adjuster applied simultane- 
ously across all 15 positions, the team concentrated on the center diameter for each main. 
They also decided to look at one grinder only since all grinders had the same adjustment 
mechanism. 

The team looked back at the data from the variation transmission investigation for the 
five center positions. We see in Figure III.12 that there were small average differences 
from day to day and main to main. Within each day, we see most of the full extent of vari- 
ation of the diameter. The team decided to investigate the time-to-time variation within a 
single shift. 

The team sampled and measured three consecutive crankshafts from a single grinder 
every 20 minutes across the eight-hour shift. The sample was about half the crankshafts 
produced by that grinder. They recorded the diameters from the five center positions only. 
During the investigation, the grinder operator was encouraged to use his usual ad hoc feed- 
back control method. There were no adjustments during the shift. We give the data for the 
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Figure III.12 Box plots of intermediate center diameter by day and main. 
 
 

63 crankshafts (21 time points and three crankshafts per time) in the file crankshaft main 
diameter feedback. 

The overall standard deviation of the diameters was 1.45, greater than the target value 
1.25 but less than 1.68, the standard deviation of the diameter before lapping in the variation 
transmission study. The team used ANOVA to assess the effects of time and mains: 

 
Analysis of Variance for diameter 

 

Source DF SS MS F P 
main 4 91.187 22.797 15.96 0.000 
time 20 155.538 7.777 5.44 0.000 
Error 290 414.203 1.428   
Total 314 660.927    

 

The residual standard deviation is 1.19. If the time-to-time and main-to-main 
differences could be eliminated, the within-grinder variation could be reduced to less than 
the target 1.25. Since the easy adjustment applied simultaneously to all mains, the team 
looked at the variation of the average diameter (averaged over the five mains) versus time 
using a multivari chart. See Figure III.13. 

There was a strong trend that dominated the part-to-part variation in average diameter 
suggesting that feedback control would be effective. For each main, the team also plotted 
the average diameter (over each time period) versus time as shown in Figure III.14. There 
were persistent differences among the mains with main 3 being large and main 4 being 
small. The average diameters over all parts by main are: 

 
 

main 
average 
diameter 

1 0.5048 
2 0.4762 
3 1.1587 
4 –0.4968 
5 0.6635 
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Figure III.13 Multivari chart of crankshaft average diameter versus time. 
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Figure III.14 Average diameter at each time period versus time period stratified by main. 
 

The team decided to build a feedback controller using the average across all mains as 
the output. Separately for each grinder, they plotted a run chart of three part averages every 
hour. The operators were trained to look at the chart and make an adjustment if the average 
fell outside the range ±2.5. For political reasons, the team did not change the in-process 
specifications. Since the diameters drifted upwards, the target for the adjusted process was 
–2.0. The team carried out a small experiment on each grinder to verify that changing the 
adjuster produced the desired effect. 

To deal with the problem of systematic differences among the mains, the team changed 
the section of the control plan that dealt with the setup of the grinding wheels. The tool set- 
ter had to ensure that the main averages of the first five parts after setup differed by no more 
than one-thousandth of an inch. 
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Once the changes were in place, the team sampled 100 crankshafts, 25 from each grinder, 

over one day from the intermediate gage. The standard deviation of the center diameters 
was 1.28, close to the goal of 1.25. 

In summary, the team added the following changes to the process control plan: 
• Monitor the stability of the final gage using a reference part and a control chart. 

Clean and master the gage as necessary. 

• Monitor the performance of the lapper on a daily basis by measuring the change 
in diameter (before minus after lapping) on one part for all mains and record the 
results on control charts, one chart for each main. Watch for evidence of taper 
change. Rebalance the lapper shoes if taper becomes an issue. 

• Adjust each grinder based on a feedback control scheme that uses the average 
across the five center positions and three consecutive parts at the in-process gage. 

• Change the grinder setup procedure to ensure that all main averages are close to 
equal after setup. 

The changes provided the process management with ongoing, timely information to better 
manage the process. The process engineer reacted to trends and anticipated problems 
before they occurred. 

There were many benefits to this project. The taper rework was virtually eliminated by 
maintenance on the lapper. The scrap rate was reduced from 7.2% to 2.0% as measured 
over a one-month period. Each percent reduction in scrap saved approximately $250,000 
per annum. The first-time-through rate at the final gage was held at over 90%. The crank- 
shaft line had a large gain in productivity and a large reduction in scrap costs. 

 
Highlights 

Some strengths and weaknesses of this case are: 

• Addressing both taper and diameter scrap and rework problem at the same time 
resulted in a complicated problem. The team needed to look simultaneously at 
20 outputs (15 diameters and 5 tapers). 

• The team wisely checked the stability of both the final and intermediate gages. 

• To prevent recurrence of the problem, the team implemented feedback control 
using reference parts for ongoing monitoring of the gages and lapper. 

• Not establishing a new baseline after the team made substantial improvements 
to the final gage was risky since it was harder to tell if a dominant cause acted 
in later investigations. 
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CHAPTER 1—NO EXERCISES 

CHAPTER 2 

2.1 The word variation is used in other contexts to describe a difference between a real- 
ized and target value such as in budget variation. How does this use compare to vari- 
ation as discussed in Chapter 2? 

2.2 We have heard the following comment many times from manufacturing engi- 
neers: “The cause of the variation is the product design—what can you expect me 
to do?” Discuss the comment in light of the definition of cause in Section 2.2. 

2.3 Profile A is a measure of deviation of the actual from the ideal shape of a camshaft 
lobe over one region (A) of the lobe. The target value is zero and the upper specifi- 
cation limit is 250 microns. Use the data in the file camshaft lobe runout baseline to 
summarize the variation in this output. Do all lobes exhibit the same variation? Is 
there any time pattern in the variation? 

2.4 Construct histograms and run charts for output 1 and output 2 given in the data file 
chapter 2 exercise 4. Find the average and standard deviation for each output. 
Assume the target value and upper specification limit for these lower-is-better out- 
puts are 0 and 35. 
a. Is the variation the same for each output? 
b. Is the nature of the variation over time the same for each output? 

2.5 You may convince yourself that the formulas for combining means and standard 
deviations given in Section 2.4 are true with the following numerical demonstration 
you can conduct in MINITAB. Generate two columns of 100 values sampled from 
some model (in MINITAB: Calc → Random Data → your choice of model and 
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parameters, for example, Normal with mean and standard deviation 0 and 1, respec- 
tively). Then, calculate two new data columns. Let one column be the sum of the 
original two columns and the other the difference. 
a. Find the standard deviation and average for each of the four columns. 
b. Calculate the sum and differences of the averages for the first two columns. How 

do these compare to the average of the other two columns respectively? 
c. Calculate the standard deviation for the sum and difference using the “square root 

of sum of squares” formula given by 2.1. How do the results compare to the stan- 
dard deviations for the last two columns? 

2.6 At a project review, the team presented the following summary of their investigation 
based on standard deviations. 

 

Source of variation Percent of total 

Measurement system 30 

Identified cause 50 

Unidentified causes 81 
 

a. The reviewing manager questioned the numbers in the second column of the 
table because they did not add to 100. Is there an error? Explain. 

b. By what percentage can the process standard deviation be reduced by eliminating 
the contribution of the identified cause? 

c. Is the identified cause a dominant cause? 

2.7 In Chapter 1, we discussed a project to reduce variation in pull, an alignment char- 
acteristic of light trucks. Recall that 

Pull = 0.23*(right caster – left caster) + 0.13*(right camber – left camber) 

and that the data for two months’ production are stored in the file truck pull baseline. 
The data are summarized in the following table. 

 

Output Average Standard deviation 

Left camber 0.257 0.129 

Right camber 0.249 0.130 

Left caster 3.519 0.224 

Right caster 4.519 0.243 

Pull 0.231 0.082 
 

a. Use the formula for pull and the results for how averages and standard deviations 
combine to predict the average and standard deviation for pull given by the last 
row in the table indirectly from the component averages and standard deviations. 
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b. Suppose you had the resources to reduce the variation in one of the alignment 

angles by 50%. Which angle would you choose? By how much, approximately, 
would the pull standard deviation be reduced? 

 
 
CHAPTER 3 

3.1 For a problem of interest to you speculate about the likely costs and feasibility of 
implementing each of the possible variation reduction approaches. 

3.2 Variation in the location of a drilled hole in a machined casting can cause poor fits 
when the part is bolted to an engine. To reduce this variation, an engineer considers 
a variety of possible approaches. 
a. A vision system is available that can measure location on 100% of the parts and 

reject those that it judges to be out of specification. What are the advantages and 
disadvantages of such an approach? 

b. Institute a feedback controller by measuring two parts every hour. If hole location 
on either part is outside of specification, stop and adjust the process. When is 
such a scheme likely to be effective? 

c. A third choice is to find a dominant cause of the variation. What are the advan- 
tages and disadvantages of this strategy? 

d. If a dominant cause can be discovered, what options does the engineer have? 
 
 
CHAPTER 4—NO EXERCISES 

CHAPTER 5 

5.1 Briefly discuss the advantages and disadvantages of the following—be sure to think 
of potential errors as described within the QPDAC framework. 
a. To estimate the baseline performance of a grinding process, 100 consecutive pis- 

tons were sampled and the diameters were measured. 
b. To investigate a proposed change to a chemical process, the investigators tried the 

change in a pilot process rather than the production process. 

5.2 In the camshaft lobe BC runout problem described in Chapter 1, the team selected 
50 parts (10 per day over 5 days) and measured the BC runout for each of the 12 
lobes on each camshaft to quantify the baseline. The 600 runout measurements are 
stored in the file camshaft lobe runout baseline original. Conduct an analysis of 
these data. Are your conclusions different from those in Chapter 1? Why? 

5.3 To assess a measurement system used to check the diameter of an engine bore, an 
investigator plans to repeatedly measure the same four (of the eight) bores on five 
blocks sampled from a shift of production. 
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a. Discuss the advantages and disadvantages of using 10 rather than 5 blocks. 
b. In the investigation, all the blocks produced over one shift were available for 

study. Give two considerations that the investigators should take into account in 
making the choice of available blocks. 

c. The plan was to make all measurements in a single day. Discuss the advan- 
tages and disadvantages of making the measurements over a longer time 
period. 

d. When would the investigator be better off devoting the available resources to 
measuring all eight bores on fewer engine blocks? 

5.4 You are a manager with the responsibility to decide if you should change the sup- 
plier for a tooling insert. You receive a report from your process engineer who has 
conducted an investigation into a new insert. He gives you the following verbal 
report and recommendation: 

Our current insert has an average life of 1105 parts. To assess the perform- 
ance of the new supplier, we asked them to supply 10 inserts. We checked 
them the inserts out on one of our machines last week and got an average of 
1300 pieces. Since the cost is the same, I think we should switch to the new 
inserts. 

Using the QPDAC framework, think of five questions you would ask about the 
conduct of the investigation before you might accept the recommendation. 

 
 
CHAPTER 6 

6.1 In Chapter 1, we described a problem in terms of the lobe geometry of camshafts. 
The data are given in the file camshaft lobe runout baseline. Quantify the problem 

  baseline for the following output. 
a. BC runout 
b. Angle error 

6.2 Many programs such as Excel cannot easily handle missing observations. 
MINITAB is an exception. Missing values are often stored using a special numeri- 
cal code (–99 is common). These special codes can result in much confusion and 
lead to incorrect conclusions. Consider the data rod thickness baseline with missing 
observation. In the file, there are two outputs. The output thickness_–99 uses a 
numerical code of –99 for missing observations, while thickness_missing uses the 
MINITAB missing observation symbol (*). Quantify the baseline for these two out- 
puts. Which data summaries show the missing observation and which do not? 

6.3 The baseline investigation for the V6 piston diameter example was described in 
Chapter 5. The data are given in the file V6 piston diameter baseline. Suppose the 

 data were collected so that all the pistons from a given hour were collected at the 
start of the hour. Now the data come in subgroups as defined by hour. What sum- 
maries used in the baseline analysis are affected by the subgrouping? When taking 
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the subgrouping into account are the conclusions any different than those derived in 
Chapter 5? 

6.4 Based on customer complaints concerning installation difficulties, a team investi- 
gated variation of a key fascia dimension. To establish a baseline, they measured the 
dimension on 147 fascias sampled from one month’s production. The data are given 
in the file fascia dimension baseline. Using appropriate summaries of the data, 
quantify the baseline. Are there any concerns? 

 
CHAPTER 7 

7.1 In a process improvement problem to improve the quality of a roof panel, the meas- 
urement system (specially designed for the project) counted the number of updings 
on each panel. To assess the measurement system, the number of updings on 20 bad 
panels and 20 good panels was counted twice. The data are given in roof panel 
updings measurement. 
a. Can this investigation be used to assess the measurement variation of the count- 

ing process? Explain. 
b. Can this investigation be used to assess the bias of the counting process? Explain. 
c. The same operator counted all panels. Does the order in which he makes the 

counts matter? It is most convenient to count the same panel twice in a row. Is this 
a good idea? 

d. A scatter plot of the first versus the second measurement is given as follows. Note 
that some plotting symbols correspond to more than one pair of measurements? 
What does the scatter plot tell you about the counting process? 
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e. This investigation was conducted over one hour. What are the advantages and 
disadvantages of spreading the two measurements on each panel over two days? 

f. Can the counting process discriminate between good and bad panels? 

7.2 To monitor the process that produces engine blocks, piston bore diameters are meas- 
ured on every block because they are key characteristics. Each engine block has 

Bad 
Good 

Se
co

nd
 c

ou
nt

 



CD–46 Exercises 
 

 
eight bores. The bore diameter is measured at three different heights in each bore 
(bottom, middle, and top) and at two different orientations at each height. Because 
the measurement process is automated, there are no operators. A measurement 
investigation was conducted over a day where the diameter of every bore on four 
blocks was measured four times each. The main concern was out-of-round, given by 
10,000 times the difference of the two diameters at a particular height. The data are 
given in the file block bore diameter measurement. From a baseline investigation the 
out-of-round standard deviation was 22.8. 
a. Determine the discrimination ratio. Is the measurement system adequate? 
b. What would have been the advantage and disadvantage of conducting the meas- 

urement investigation over a longer time period? 

7.3 The following MINITAB results and graphs arise from a measurement system 
investigation in which two different operators measured five parts three times each. 
The five parts were selected with initial measured values spread out over the full 
extent of variation, 0 to 8. The data are given in the file chapter 7 exercise 3. The two 
operators worked different shifts so the parts were saved from one shift to the next. 
The results include an edited ANOVA analysis as suggested in the supplement to 
Chapter 7 and the default gage R&R analysis in MINITAB. 

 

Analysis of Variance for measurement  
Source DF SS MS F P 
part 4 230.819 57.705 81.25 0.000 
Error 25 17.754 0.710  
Total 29 248.573   

 

Pooled  StDev  = 0.8427 
 

Gage R&R  
  %Contribution 
Source VarComp (of VarComp) 

Total Gage R&R 0.900 8.62 
Repeatability 0.425 4.07 
Reproducibility 0.475 4.55 

operator 0.475 4.55 
Part-To-Part 9.547 91.38 
Total Variation 10.447 100.00 

 

 StDev Study Var   %Study Var 
Source (SD) (5.15*SD)    (%SV) 
Total Gage R&R 0.94876 4.8861 29.35 

Repeatability 0.65207 3.3582 20.17 
Reproducibility 0.68917 3.5492 21.32 

operator 0.68917 3.5492 21.32 
Part-To-Part 3.08975 15.9122 95.59 
Total Variation 3.23214 16.6455 100.00 

 

Number  of  Distinct  Categories  =  5 
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Gage R&R (ANOVA) for measurement 

 
 

Gage name: 
Date of study: 
Reported by: 
Tolerance: 
Misc: 
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a. What do the given results tell us about the bias and variation of the measurement 
system? – 

b. In the gage R&R results, the X chart by operator is out of control. What does 
this mean? 

c. In the gage R&R results, why is the sum of the % study variation column not 100%? 
d. What is the discrimination ratio (D) for this system? How does the part selection 

procedure influence this ratio? 
e. The gage R&R is about 29%, yet D is small. Why? 
f. The results suggest a small operator-to-operator difference. This observed differ- 

ence may be due to a difference in method or a drift of the system over the two 
shifts. How can you separate these two possibilities? 

7.4 To assess the variation in the system designed to measure camshaft lobe geometry 
over time, the same camshaft was measured daily for a month. At each measure- 
ment, a number of characteristics (for example, angle error, BC runout, taper, and so 
on) on each lobe were determined. The data are given in the file camshaft lobe 
runout measurement stability. Is there evidence of time-to-time variation in this 
measurement system? 

7.5 In a process that produced V8 pistons, problems occurred when pistons in inventory 
were remeasured (for an audit) and found to be out of specification. Since the 
process used 100% final inspection, this could only occur if there was a problem 
with the measurement system. This was puzzling because a recent gage R&R inves- 
tigation at the final gage had concluded that the measurement system was accept- 
able. As a result, the team decided to conduct a long-term measurement investigation. 
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Two pistons were chosen to span the range of diameter normally seen. Each piston 
was measured four times a day (spread out over the day) for 12 days. During that 
time the regular gage calibration was performed every four hours. The data are given 
in the file V8 piston diameter measurement stability. 
a. Does the measurement system drift over time? 
b. What effect does the regular gage calibration have? 

7.6 Consider the brake rotor balance example described in the case studies. In the meas- 
urement investigation, three rotors were specially selected: one well balanced, 
another poorly balanced, and the final rotor requiring weight near the specification 
limit of 0.5. The three rotors were measured twice by each of the three gages on 
three separate days. There is no operator effect since the gages are automated. The 
54 measurements are given in brake rotor balance measurement. The analysis given 
in the case study focuses on the measurement of the weight needed to balance the 
rotor. However, the location (or orientation) of the weight needed to move the rotor’s 
center of gravity is also important. Can the measurement system consistently deter- 
mine the orientation of the required balance weight? From the baseline investiga- 
tion, the orientation of the weight was roughly uniform from 0° to 360°. 

7.7 If necessary, measurement variation can be reduced by applying the Statistical Engi- 
neering algorithm. Describe how each of the seven variation reduction approaches 
might be used to improve a measurement system. 

 

CHAPTER 8—NO 

EXERCISES CHAPTER 9 

9.1 Think of a process and problem you know well. Define various families of causes. 

9.2 The following plot shows the results of a process investigation aimed at finding a 
dominant cause. The dashed lines give the full extent of variation in the output as 
defined by the problem baseline. Can the input be ruled out as a dominant cause of 
variation? 
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CHAPTER 10 

10.1 The flow chart that follows shows the major steps in an assembly process to set the 
wheel alignment of a truck. 

 

CamFrame

Upper Control
Arm

Lower Control
Arm

Knuckle

Assembly

Aligner 1

Aligner 2

Aligner 3

Aligner 4

MeasurementComponents  
  

The characteristic of interest is right camber with specification 0.5 ± 0.5°. Cam- 
ber is measured on every truck by one of the four gages (aligners). The process per- 
formance for right camber is shown as follows based on about 6200 consecutive 
trucks. 
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a. Based on this histogram, can the measurement system be eliminated as a domi- 
nant cause of the camber variation? 

b. What data could you collect to demonstrate that a dominant cause does not act in 
the measurement system? 

c. How could you rule out the assembly operation as the home of a dominant cause? 
d. How could you eliminate differences in the suppliers of the upper control arm as 

the home of a dominant cause? 
e. The plot that follows shows the process behavior over three shifts. What family 

of causes can be eliminated based on these data? 
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f. The following plot shows the camber variation for the first nine trucks in the 

data set. What families can be ruled out as the home of a dominant cause using 
these data? 
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g. In a special study, one key characteristic of the lower control arm was measured 

for 30 trucks. The other components were specially selected to ensure that they 
were well within specification. Based on the plot that follows, is the lower con- 
trol arm characteristic a dominant cause of right camber variation? Explain. 
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10.2 Consider again the camshaft lobe runout problem introduced in Chapter 1. Each 
camshaft has 12 lobes with a number of characteristics of interest. In a search for a 
dominant cause, we may compare the lobe-to-lobe and camshaft-to-camshaft fami- 
lies of variation. Using the problem baseline data given in the file camshaft lobe 
runout baseline, explore the relative sizes of the two families for the following char- 
acteristics and decide which family, if any, can be eliminated. 
a. Profile A 
b. Profile B 
c. Profile C 

10.3 In the manufacture of an injection molded part, a key crossbar dimension exhibited 
excess variation. The problem baseline estimated the standard deviation of the 
crossbar dimension as 0.46 with full extent of variation –0.3 to 2.0. The goal was to 
reduce the standard deviation to less than 0.25. An investigation showed the meas- 
urement system to be highly capable. 

Next the team conducted a multivari investigation where five consecutive parts 
were sampled every 30 minutes for four hours. Analyze the data given in crossbar 
dimension multivari. Which family of variation can be eliminated as the home of the 
dominant cause? 

10.4 As described in Chapter 7, in a process that placed labels on bottles, the team 
searched for an acceptable measurement system. The file label height measurement 
contains the data from an investigation in which three operators using a hand feeler 
gage measured three specially chosen bottles three times on two different days. 
The bottles were chosen to roughly cover the range of label height values seen in the 
process. From a baseline investigation an estimate of the overall standard deviation 
was 0.022. The results of a one-way ANOVA are: 

Analysis of Variance for height 
Source DF SS MS  F  P 
part 2  0.0413263   0.0206631 263.10 0.000 
Error 51 0.0040054 0.0000785 
Total 53 0.0453317 

Individual 95% CIs For Mean 
Based on Pooled StDev 

Level N  Mean  StDev              ----+---------+---------+---------+-- 
1 18 0.06966 0.00965      (-*-) 
2 18 0.10950 0.00930 (-*) 
3 18 0.13705 0.00749 (-*) 

----+---------+---------+---------+-- 
Pooled StDev =  0.00886 0.075 0.100 0.125 0.150 

We have stdev(due to measurement) = 0.00886, and thus 
 

stdev(due to process)  =  ( ) ( )( )2 20.0204 0.022 0.00886−   
and an estimated measurement discrimination ratio of 2.3. The team decided to 
improve the measurement system before addressing the original label height 
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variation problem. Reanalyze the measurement investigation results to eliminate 
families of possible dominant causes of measurement variation. 

10.5 A process improvement problem was initiated to reduce the number of updings on a 
roof panel. Updings are small outward dents in the metal surface caused by contam- 
ination. The team discovered that the dominant cause was contamination before the 
forming process step. In an investigation, the team measured the particle count on 
coils directly after the arrival from steel supplier and again after blanking and stamp- 
ing (before the forming process). They measured at the tail, middle, and head of four 
different coils. The data are given in the file roof panel updings variation transmission. 
What does the following scatter plot tell us about the dominant cause? The plotting 
symbols correspond to the four different coils. 
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10.6 In the engine block porosity example discussed in Chapter 10, the team found the 
occurrence of high porosity coincided with production directly after breaks. To 
explore this clue further, they conducted another investigation in which the porosity 
of 50 consecutive blocks was measured. The first six blocks were taken from 
directly before the lunch break, and the next 44 blocks were the first ones produced 
after the break. The data are given in the file engine block porosity run chart. What 
does the observed pattern in the run chart tell us about the dominant cause? 
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10.7 High silicon concentration in cast iron is undesirable as it was found be a dominant 
cause of fluidity variation. However, measuring the silicon level can be difficult. The 
measurement process consisted of sampling the molten iron by pouring sample 
coins for testing. The coins are then machined and polished before being spectro- 
chemically analyzed. The full extent of variation in percent silicon as measured in 
the current process was 1 to 4%. The measurement system was investigated by 
repeatedly measuring three different coins that roughly covered full extent of varia- 
tion in the observed percent silicon. Two operators measured each of the three coins 
three times on each of two days. The data are given in the file iron silicon concen-   

 tration measurement. Analysis of the measurement results estimated the measure- 
ment standard deviation as 0.33. The corresponding estimate of the process standard 
deviation was 0.5; thus the discrimination is too small at around 1.5. The team needs 
to improve the measurement system. Using the existing measurement investigation 
data, are there any clues about the dominant cause of the measurement variation? 

 
CHAPTER 11 

11.1 In a multivari investigation, two consecutive pieces are selected from each of three 
pallets once per hour. Sketch the appearance of the multivari chart that shows all 
three families at the same time if a dominant cause lies in the following family. Use 
the following multivari chart template in which the dashed lines indicate the full 
extent of variation. 
a. Pallet-to-pallet family 
b. Part-to-part family 
c. Hour-to-hour family 
d. An interaction between the part-to-part and pallet-to-pallet families 
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11.2 In the engine block leakers example, introduced in Chapter 1, the baseline defect 
rate was 2–3%. The team conducted a multivari investigation where three consecu- 
tive blocks were taken at twelve different times throughout the day. The investiga- 
tion continued for three production days giving a total of 108 castings. Each block 
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was tested for leaks. The data are given in the file engine block leaks multivari. What 
can you conclude? 

11.3 At an intermediate operation the team planned a multivari investigation in which three 
consecutive parts were taken from each of two machines operating in parallel once 
every hour for two days. Consider two different processes. In the first process, the order 
of the parts coming from upstream is preserved, while in the second process the order 
is jumbled. When interpreting the resulting multivari chart (think specifically about the 
part-to-part family), what difference does it make which process we are observing? 

11.4 In a multivari investigation, the diameter of a transmission shaft was measured at 
four positions (left and right side at two different orientations) for three consecu- 
tively sampled shafts each hour. The data are available in the file transmission shaft 
diameter multivari. 
a. What conclusion can you draw from the multivari charts that follow? 
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b. Using the data assess whether the dominant cause acts in the shaft-to-shaft family. 

11.5 In the production of engine blocks, bore diameters are key characteristics. Bore 
diameter is measured at three heights and two orientations in each of the eight bores 
in each block. The team used Statistical Engineering to address a problem of excess 
bore diameter variation. The baseline investigation found a standard deviation of 
3.04 and the full extent of variation of –9 to 9 as measured from nominal in microns. 
There were no strong differences between the different bores, heights, or positions. 
Another investigation concluded that the measurement process was adequate. To 
isolate the processing step where the dominant cause acts, the team selected 30 
engine blocks haphazardly from a day’s production. In the investigation the bore 
diameter (measured from nominal at that processing step) in the first bore at the top 
position and first orientation was measured at each of five processing steps in the 
machining part of the process. The data are given in the file block bore diameter 
variation transmission. Which processing step is home to the dominant cause? 

11.6 In the paint film build example described in Chapter 3, a baseline investigation 
found the standard deviation was 0.315, with an average of 16.2 thousandths of an 
inch. The full extent of variation was 15.2 to 18.5. To search for a dominant cause, 
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the team conducted a multivari investigation where they measured the film build at 
five positions on five cars in a row every hour for two shifts (16 hours). This resulted 
in a total of 400 film build measurements. The data are given in the file paint film 
build multivari. Based on the plots that follow, what conclusions can you draw? We 
define group as (hour – 1) ⋅ 5+ position. 
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Multivari chart for film build by group 
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11.7 A team wanted to reduce the number of updings on a roof panel. Updings are small 
outward dents in the metal surface caused by contamination. A baseline investiga- 
tion found that the total number of updings in 20 consecutive panels ranged between 
5 and 438. To search for a dominant cause the team conducted a multivari investiga- 
tion where the number of updings was counted for 20 consecutive roof panels from 
three sections of seven different pallets of steel sheets. Originally, the plan was to 
repeat this data collection over two separate days. However, the team found the full 
extent of variation from the baseline was observed on the first day so they stopped 
collecting data. The data are given in the file roof panel updings multivari. 
a. Analyze the data using multivari charts and draw conclusions. 
b. When the number of updings was counted they were classified into one of the 

nine locations as numbered in the schematic that follows. Analyze the multivari 
data using a concentration diagram based on the given schematic. 
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11.8 The baseline investigation for the sand core example discussed in Chapter 1 
involved taking five samples over a single day of five consecutive shots of four cav- 

  ities each. The data are given in sand core strength baseline. What conclusions can 
you draw? 

 
 
CHAPTER 12 

12.1 Vehicle plant and warranty complaints for loose spark plug wires at the spark plug 
end prompted an improvement project. As a result of several investigations, the fam- 
ily of causes related to push forces on the wires was the home of a dominant cause. 
A further investigation then compared eight loose and eight good connections. For 
each of the 16 connections, the team measured the terminal position of wires and 
terminal runout of the spark plug in millimeters. The data are given in the file spark 
plug connection comparison. What do the data tell us about the dominant cause? 

12.2 A sunroof installation process suffered from a 90% rework rate due to a lack of 
flushness. Flushness is defined as the difference in height between the sunroof seal 
and the metal roof. It is measured using digital calipers at six points (three at the 
front and three at the back). A baseline investigation showed that flushness problems 
were most pronounced at the two front corners with full extent of variation between 
–3.5 to 4 mm and standard deviation 1.25 millimeters. A goal of reducing the front 
corner flushness variation to 0.5 and a range of –2 to 1 millimeters was established. 
Based on engineering knowledge, the team felt that only two types of characteristics 
could lead to flushness variation, namely roof crown height and attachment pad 
height. When the roof is adapted to allow installation of a sunroof, six installation 
pads are added. Based on this knowledge, the team selected six vehicles with large 
positive flushness and six vehicles with large negative flushness on both front cor- 
ners. The sunroof modules were removed and the six attachment pad heights and 
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roof crown height were measured at the front and back. The data are given in the file 
sunroof flushness input-output. What conclusions can you draw? 

12.3 An example related to sand defects in manifolds was discussed in Chapter 12. 
Before the problem mentioned in Chapter 12, the team carefully monitored the 
process for a shift. Each of 970 manifolds was classified as either scrap (due to sand 
issues) or not scrap. In addition many inputs relating to each manifold, including 
some discrete inputs such as mold number and continuous inputs such as pour time 
were recorded. In some cases the linkages were difficult to establish, and the team 
did the best they could. The data are given in the file manifold sand scrap comparison. 
What conclusions can you draw? 

 
 

CHAPTER 13 

13.1 In a verification experiment there were two suspects at two levels. The low and high 
levels for each suspect were chosen based on the extremes from historical variation. 
The results of the first three runs of the experiment are shown in the following table. 

 
Input A Input B Order Output 

Low Low 2 13 

Low High 3 16 

High Low 1 17 

High High 4 ? 

 
Given that the full extent of output variation is 12 to 30, what conclusions can you 

draw about the dominant cause? 

13.2 In the engine block porosity example discussed in the text and exercises of Chapter 
10, a dominant cause of porosity acted immediately following scheduled breaks in 
production. Based on this evidence, the team identified two suspects: iron pouring 
temperature and the addition of ladle wash. During work stoppages, iron that 
remained in the six pouring ladles cooled off because there was no external heat 
source. At the start of the break, ladle wash was added to the ladles to protect the 
refractory (surface). The team could not easily manipulate the pouring temperature, 
but they could change the amount of ladle wash. They conducted a verification 
experiment in which they added the normal amount of wash to ladles 1, 3, and 5 and 
half the normal amount to the other three ladles over two lunch breaks. At each 
break, they measured the porosity of the first 30 blocks poured (five from each 
ladle). The data are given in the file engine block porosity verification. 
a. What have we learned about the identity of the dominant cause of porosity? 
b. Explain how the effects of ladle number and the presence or absence of ladle 

wash are confounded. Does this matter? 
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c. Is it a problem that in this verification experiment we have not observed the 

behavior of the process before lunch breaks? 
 

13.3 The manufacture of a tube assembly required a protective nylon sleeve to be posi- 
tioned and bonded to a tube. The bond strength of this tube assembly was occasion- 
ally tested using a destructive test where the sleeve was subject to increased tensile 
shear load until failure. In the current process, the average pull-off force was around 
15 pounds, but roughly 8% of assemblies tested had a pull-off force less than the 
desired minimum of five pounds. The team decided to try to solve the problem by 
reducing the variation in pull-off force rather than by increasing the average pull-off 
force. A number of investigations were conducted to find the dominant cause. A 
multivari investigation suggested that the dominant family of causes was tube-to- 
tube. At this point, the team decided to conduct an experiment to search for a domi- 
nant cause using the limited process information they had gathered. They planned a 
factorial experiment with three suspects—clearance between the sleeve and tube, 
amount of adhesive, and cure time—all consistent with the tube-to-tube family clue. 
The team chose the low and high levels of each suspect to roughly match their range 
in regular production. The levels of clearance were achieved by sorting sleeves and 
tubes. There were two replicates of each treatment, and the run order was random- 
ized. The data are given in the file nylon bond strength verification and summarized 
in the following table: 

 
Treatment Order Clearance Adhesive Cure time Bond strength 

1 6, 7 Low Low Low 26, 28 

2 14, 8 High Low Low 10, 10 

3 2, 3 Low High Low 25, 26 

4 12, 5 High High Low 7, 9 

5 16, 4 Low Low High 24, 27 

6 13, 10 High Low High 12, 13 

7 15, 11 Low High High 23, 21 

8 1, 9 High High High 7, 7 

 
What do the results tell us about the dominant cause? 

13.4 Steering knuckles are produced in a gray iron casting process. Around 2% of cast- 
ings were scrapped because the percent nodularity was too small. In this example 
the team did not clearly establish a problem baseline. The team thought the cause 
must be related to the inoculation of the molten iron using a silicon-based alloy. The 
inoculant was added as the iron was poured to increase nodularity (and thus casting 
strength). Based on observing the process, the team noticed that the amount of inoc- 
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ulant added by the automated delivery system seemed to vary. The desired amount 
of inoculant was obtained by slowly shaking the inoculant onto a plate. The plate 
was designed to tip automatically when the required weight of inoculant was pres- 
ent. The team saw that the location on the plate where the inoculant fell varied, and 
they thought that this might influence when the plate tipped and thus how much 
inoculant was delivered. The team decided to verify inoculant amount as the dominant 
cause of nodularity variation. In the verification experiment, they produced a total of 
20 castings at each of two levels of inoculant amount, 12.3 and 13.5 grams. For the 
experiment the inoculant was carefully weighed and added by hand. The experiment 
consisted of eight runs of five castings each. The order of the eight runs (four at each 
level) was randomized. For each of the 40 castings the percent nodularity was deter- 
mined. The data are given in the file steering knuckle strength verification and are 
summarized in the table that follows: 

 
 

Run Inoculant amount Order Percent nodularity 

1 12.3 2 81.8, 79.4, 80.3, 80.6, 79.3 

2 12.3 3 79.8, 77.0, 77.8, 79.3, 78.7 

3 12.3 8 80.9, 82.0, 80.6, 80.6, 81.1 

4 12.3 4 81.0, 79.4, 77.0, 80.6, 80.2 

5 13.5 5 82.5, 86.1, 82.3, 83.5, 85.2 

6 13.5 7 82.1, 84.6, 83.9, 85.0, 85.6 

7 13.5 6 85.0, 87.8, 83.1, 84.0, 84.4 

8 13.5 1 85.0, 84.3, 86.3, 83.8, 82.9 

 
a. What considerations should the team have used in choosing the two levels for 

inoculant? 
b. Why was randomizing the order of the runs important? 
c. Has the team verified the dominant cause of nodularity variation? 

 
 
CHAPTER 14 

14.1 In the camshaft lobe runout example, the team searched for a dominant cause of 
variation. As discussed in Chapter 10, they conducted a variation transmission 
investigation where runout was measured directly before heat treatment and after 
the final step of the process, on the same 32 parts selected over the course of one day. 
In the investigation the grinder (one of eight) and heat treatment spindles (one of 
four) used were also recorded. The data are given in the file camshaft lobe runout 
variation transmission. They found that a dominant cause of variation was the 
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BC runout just after heat treatment and, more specifically, as shown in the plot that 
follows, that heat treatment spindle was a dominant cause. 
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In this example, the team decided not to reformulate the problem but to look for 
a more specific cause. 
a. Discuss the advantages and disadvantages of the decision not to reformulate. 
b. Suppose the team had reformulated the problem based on heat treatment spindle 

and that the original goal was to reduce the final runout standard deviation to less 
than 4.5. Using the results from a one-way ANOVA model based on heat treat- 
ment spindles, derive a goal for the new problem based on differences among 
spindle averages. 

14.2 In Chapter 11, the team found that the piston diameter directly after operation 270 
was a dominant cause of final V6 piston diameter variation. The relationship is illus- 
trated in the scatter plot that follows. The data are given in the file V6 piston diame- 
ter variation transmission. 
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The team decided to look further for a more specific dominant cause. Suppose, 
however, they had wanted to reformulate the problem in terms of the operation 270 
diameter. Determine an appropriate goal for the reformulated problem. Recall that 
the goal for the original problem was to reduce the final diameter standard deviation 
to less than 2.0. 

 
 
CHAPTER 15 

15.1 Based on customer complaints about assembly difficulty, a team investigated fascia 
dimension variation. A baseline investigation found that some fascias were too 
large. The team felt that reducing the average size of the fascias could solve the 
problem (that is, they adopted the Move the Center approach). They planned a (full) 
factorial experiment with two candidates, cycle time and cure time, each at two 
levels to look for an adjuster. They chose the levels for each candidate based on 
engineering judgment. The results of the experiment are given in the file fascia 
dimension move center and in the following table. For each treatment, the team con- 
ducted four runs producing 10 fascias for each run. The order of the 16 runs was ran- 
domized over a day. In the data, we give only the average fascia dimension from 
each run and not the individual values. 

 
 

 

Treatment 

 

Run order 
Cycle time 
(minutes) 

Cure time 
(hours) 

Average fascia size 
(from nominal) 

1 8, 10, 1, 14 85 5 4.50, 5.23, 5.75, 6.51 

2 6, 15, 12, 2 113 5 7.12, 8.25, 9.06, 9.28 

3 11, 3 , 9, 16 85 19 3.65, 3.75, 4.27, 5.34 

4 13, 5, 4, 7 113 19 4.24, 6.31, 7.15, 8.22 
 

a. Can cycle time or cure time be used as an adjuster? 
b. Suppose the goal was to reduce the average fascia size to 3.0. What do you 

recommend? 
c. What is the advantage of looking at the dimensions for all the fascias within a 

run, rather than the averages? 

15.2 An experiment was carried out to investigate four candidates to search for an 
adjuster of the formability safety margin of galvanized sheet metal trunk lids. The 
purpose was to increase the average safety margin from the baseline value of 10.7. 
In the experiment, each candidate was tested at two levels, selected to be near the 
edge of what was physically possible—see the table that follows. Note that none of 
the treatments corresponded to the existing process settings. 
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Treatment 
Run 

order 

 

Tonnage 

 

Lubrication 

 

Blank size 

 

Prebending 
Safety 
margin 

1 6 310 Unlubricated 949   1494_mm No 8 

2 16 375 Unlubricated 949   1494_mm No 11 

3 3 310 Lubricated 949   1494_mm No 12 

4 11 375 Lubricated 949   1494_mm No 0 

5 7 310 Unlubricated 965   1500_mm No 13 

6 15 375 Unlubricated 965   1500_mm No 6 

7 4 310 Lubricated 965   1500_mm No 11 

8 13 375 Lubricated 965   1500_mm No 1 

9 1 310 Unlubricated 949   1494_mm Yes 18 

10 12 375 Unlubricated 949   1494_mm Yes 17 

11 5 310 Lubricated 949   1494_mm Yes 18 

12 14 375 Lubricated 949   1494_mm Yes 10 

13 2 310 Unlubricated 965   1500_mm Yes 8 

14 10 375 Unlubricated 965   1500_mm Yes 12 

15 8 310 Lubricated 965   1500_mm Yes 16 

16 9 375 Lubricated 965   1500_mm Yes 8 

 
Press tonnage was very difficult to change so all eight runs with low press ton- 

nage were carried out first. Within each group of eight runs, the order was random- 
ized. The data are given in the file sheet metal move center. 
a. Analyze the experimental data to see if any of the candidates is an adjuster. 
b. Does the restriction on randomization required for this experiment make any dif- 

ference to the conclusions we can draw? 

15.3 In the sand core strength example introduced in Chapter 1, too many cores were 
breaking during handling. A suggested solution was to increase the core strength 
(and thereby reduce core breakage) by increasing the resin concentration. It was 
known that increasing the resin would result in a stronger core. However, the precise 
nature of the relationship—that is, how much the core strength increases for a given 
change in resin concentration—was not known. An experimental investigation was 
planned to quantify the relationship. Three levels of resin concentration (1.3, 1.6, 
1.9% by weight) were chosen based on engineering judgment. In the experiment, 40 
cores for each level of resin were produced; 15 were measured for strength (using a 
destructive test) and the remaining 25 were processed to look for casting problems. 
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The experiment consisted of three runs with 15 repeats. The order of the runs was 
not randomized. The data are given in the file sand core strength move center. 
a. What can you conclude about the relationship between resin concentration and 

core strength? 
b. The team used only three runs with 15 repeats for each run. Discuss the advan- 

tages and disadvantages of this plan compared with using five replicates for each 
treatment with three repeats each. 

 

CHAPTER 16 

16.1 In a sonic welding operation, problems arose due to poor weld strength, measured 
as pull-off force. The goal was to reduce the variation and increase the average pull- 
off force. The second goal is not addressed here. From the baseline, the full extent 
of variation for pull-off force was 0.9 to 3.0. The team discovered that the dominant 
cause acted in the time-to-time family. While they could not be more specific, the 
team felt that the dominant cause was related to material hardness, which was out- 
side their control. They decided to try to desensitize the process to variation in the 
dominant cause. 

The team planned a fractional factorial experiment with four candidates at two 
levels each in eight treatments. Using the results of regular process monitoring, they 
identified three time periods when weld strength was low, medium, and high relative 
to the baseline. In each period, they randomized the order and then produced a part 
with each of the eight treatments. The pull-off force data and plan are given in the 
file sonic weld desensitization and the table that follows. The three values in the 
columns Order and Pull-off force correspond to the three different time periods. The 
original settings of the candidates correspond to treatment 2. 

 
Treatment Order A B C D Pull-off force 

1 7, 2, 6 –1 –1 –1 –1 1.8, 2.1, 2.3 

2 4, 6, 1 –1 –1 1 1 0.9, 2.0, 2.7 

3 6, 3, 4 –1 1 –1 1 2.0, 2.4, 2.1 

4 8, 1, 2 –1 1 1 –1 0.6, 1.5, 3.0 

5 3, 7, 8 1 –1 –1 1 2.8, 2.9, 3.0 

6 2, 4, 3 1 –1 1 –1 2.1, 3.0, 3.7 

7 1, 8, 7 1 1 –1 –1 2.9, 3.2, 3.1 

8 5, 5, 5 1 1 1 1 2.3, 2.5, 4.0 

 
a. Explain why the team believed the dominant cause acted over the three runs for 

each treatment. 
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b. What levels of the candidates do you recommend to reduce the variation in pull- 

off force? 
c. Another way to assess the results of this experiment is to summarize the output 

across each treatment using log standard deviation. Using this performance 
measure, do your conclusions differ from part b? 

16.2 In the crossbar dimension example discussed in Chapter 12, the team found that the 
dominant cause of dimension variation was barrel temperature. Because it was hard 
to control in regular operation, the team decided to try to make the process less sen- 
sitive to barrel temperature variation. In the current process, barrel temperatures 
ranged over roughly 4°C. The team planned a half fraction factorial experiment with 
three candidates—target barrel temperature, injection pressure, and material—at 
two levels each, as shown in the following table. The current injection pressure and 
target barrel temperature were 1000 and 75, respectively. Note that although the 
variation in barrel temperature was the dominant cause, the target barrel temperature 
is a fixed input. Five crossbars were produced and measured in each run. For each 
treatment, there were two runs, one at the target barrel temperature plus 2°C and the 
other at the target barrel temperature minus 2°C. The data are given in the file 
crossbar dimension desensitization and in the table as follows. 

 
 

 
 
 

Treatment 

 

Target 
barrel 

temperature 

 
 

Injection 
pressure 

 
 
 

Material 

Dimensions 
at barrel 

temperature 
–2°C 

Dimensions 
at barrel 

temperature 
+2°C 

1 75 1000 Old 0, –0.1, 0.1, 0.5, 1.1, 0.8, 
–0.1, –0.2 0.9, 0.7 

2 75 1200 New 1.1, 0.6, 1.0, 1.5, 1.8, 1.5, 
1.4, 1.1 1.4, 1.3 

3 79 1000 New 1.1, 1.0, 1.3, 1.0, 1.1, 0.8, 
0.9, 0.8 0.9, 1.0 

4 79 1200 Old 1.2, 1.8, 1.8, 2.3, 2.1, 2.4, 
1.7, 1.9 2.1, 1.9 

 
Since the average dimension can be easily adjusted, we focus the analysis on 

finding a way to make the process less sensitive to barrel temperature variation. 
a. What levels of the candidates do you recommend? 
b. Injection pressure and material were chosen as candidates based on engineering 

judgment. Looking again at the results presented in Chapter 12, what motivates 
the choice of target barrel temperature as a possible candidate? 

16.3 In Chapter 16, we describe a desensitization experiment for the refrigerator frost 
buildup example where each refrigerator is subjected to only two extreme levels of 
environmental causes. Here we consider a hypothetical experiment in which each 
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refrigerator is exposed to a number of environmental conditions to ensure that any cho- 
sen new design works well under any conditions, not just extreme conditions. 

The experimental design for the four candidates—D1, D2, D3, and D4—is the 
same as in Chapter 16. Here we plan to test each of the eight refrigerators (treat- 
ments) under all eight possible combinations of the usage or environmental inputs 
as given in the following table: 

 
 

 

Varying input 
Cause combination 

1 2 3 4 5 6 7 8 

Ambient 
temperature (°C) 

26 26 26 26 32 32 32 32 

Relative humidity 
(%) 

70 70 90 90 70 70 90 90 

Door openings 
per hour 

4 8 4 8 4 8 4 8 

 

The experimental plan had 64 runs. To conduct the experiment, all eight refriger- 
ators were simultaneously placed in a test chamber and exposed to each cause com- 
bination in the given order. The cooling plate temperatures are given in the file 
refrigerator frost buildup desensitization2 and in the following table: 

 
 

 Candidates Cooling plate temperatures (in cause combination) 
Treatment D1 D2 D3 D4 1 2 3 4 5 6 7 8 

1 N O O N 3.6 3.9 4.6 1.0 4.4 0.1 4.4 0.7 

2 N O N O 5.1 4.7 4.3 2.9 4.2 4.1 7.1 5.1 

3 N N O O 4.6 4.6 4.3 4.9 2.4 5.0 5.5 16.0 
4 N N N N 3.8 12.8 6.9 6.9 7.1 6.7 3.0 15.7 

5 O O O O 2.9 0.2 –0.2 –0.2 –0.2 –0.2 –0.2 16.0 

6 O O N N 0.1 1.9 0.8 1.3 5.9 5.1 0.0 14.7 

7 O N O N 0.7 0.8 0.1 0.1 0.4 0.2 0.1 –0.1 

8 O N N O 0.2 3.4 0.3 1.0 4.0 0.2 5.2 16.0 
 

In the table, we have coded the new and original settings for the candidates as N and O, 
respectively. What conclusions can you draw? Remember, the goal is to desensitize 
cooling plate temperature to changes in the environmental conditions. 

16.4 There were excessive failures in the accelerated life testing of electric motors. Using 
a group comparison investigation, the team found that unevenness in the commuta- 
tor shaft surface was a dominant cause of these failures. The team next reformulated 
the problem to one of reducing the unevenness in the commutator shaft. The surface 
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unevenness is measured on a scale of 1 (smooth) to 10 (rough). With further investi- 
gation, the team determined that the dominant cause of the variation in the (final) 
smoothness was the shaft profile before machining. The team adopted the Desensi- 
tization approach. They decided to conduct a fractional factorial experiment with 
eight treatments using four candidates. For each of the eight treatments there were 
two runs, one that used a shaft with a premachined smooth profile, and a second that 
used a rough profile. The experimental plan and data are given in the file electric 
motor failure desensitization and the table that follows. The order of the runs was 
randomized. 

 
 

 Smoothness 
 

Treatment 

 

Depth 
Grind 
time 

Rotational 
speed 

Feed 
rate 

 

Order 
Smooth 
profile 

Rough 
profile 

1 Shallow Short 1800 Slow 4, 5 2 7 

2 Deep Short 1800 Fast 6, 11 3 8 

3 Shallow Long 1800 Fast 1, 14 1 9 

4 Deep Long 1800 Slow 16, 12 2 8 

5 Shallow Short 2400 Fast 13, 9 3 2 

6 Deep Short 2400 Slow 10, 8 1 4 

7 Shallow Long 2400 Slow 3, 7 2 3 

8 Deep Long 2400 Fast 15, 2 3 5 
 

a. What is the confounding structure of the design? What limitations does this 
introduce? 

b. What conclusions can you draw? 
c. What would be the advantages and disadvantages of measuring the time to fail- 

ure using the accelerated life test for each run rather than judging the smoothness 
of the commutator surface after machining? 

 
 

CHAPTER 17 

17.1 In an investigation, 100 trucks were selected from regular production over two weeks. 
The frame geometry as given by four summaries (left and right front, left and right rear) 
and the alignment outputs left and right camber and caster were determined for all 100 
trucks. The data are given in the file truck pull feedforward. In Chapter 17 an analysis 
determined that feedforward control based on frame geometry was feasible for left 
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caster. Repeat the analysis for the other outputs: right caster, left camber, and right 
camber. 

17.2 Engine assembly problems occurred due to a poor fit between the pistons and the 
engine bore. The dominant cause of poor fit was found to be variation in the clear- 
ance, the difference between the (minimum) bore diameter and the (maximum) pis- 
ton diameter. To solve this problem, the team thought about using the feedforward 
(selective fitting) approach. The idea was to measure each piston diameter and place 
them into bins of similar diameter. Then, after each bore diameter was measured, a 
piston would be selected from the appropriate bin. To assess this proposal the diam- 
eter measurements for 469 pistons and bores, as measured from nominal, are given 
in the file block bore diameter feedforward. Quantify the expected reduction in 
clearance variation when using one (that is, no selective fitting), two, three, or four 
bins of pistons. A suggestion is to define the bins by dividing the range in piston and 
bore diameters (roughly –10 to 10 microns) into equal widths. 

17.3 In the V6 piston diameter example discussed in Chapter 11, the team found that pis- 
ton diameter after Operation 270 was a dominant cause of the final diameter. The data 
are given in the file V6 piston diameter variation transmission. This suggested that 
feedforward control might be a feasible approach. 
a. What are the requirements for feedforward to be feasible in this context? 
b. If feedforward were feasible, assess the potential benefit using the results of the 

variation transmission investigation. 
c. Could the team also use the diameter after Operation 200, rather than the diame- 

ter after Operation 270, as the input to a feedforward controller? 
 
CHAPTER 18 

18.1 The bias of the system used to measure camshaft journal diameters tended to increase 
over time. The cause of this increase was not determined. Instead, the team introduced 
a feedback controller. At the start of each shift, a master journal with known diameter 
was measured. If the measured diameter deviated from the known value by a large 
amount, the measurement system was recalibrated. 
a. How could we sensibly define a large deviation in this context? 
b. What would happen to the measurement variation if the measurement device 

were recalibrated every time the master journal was measured, rather than only 
when the deviation from the known dimension was large? 

18.2 In a machining process, the dominant cause of dimension variation acted in the 
setup family. That is, the dimension variation within a particular setup was small rel- 
ative to the variation from one setup to the next. The existing control plan called for 
a complete process adjustment back to the target based on the first observation after 
each setup. There were more than 200 parts machined between setups. The baseline 
dimension standard deviation was 0.31. The team decided to explore a new feedback 
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control scheme based on the average for the first five observations after each setup. 
In an offline investigation, they carried out 10 setups and produced 20 parts after 
each setup without any adjustment. The dimension data, scaled so that the target is 
zero, are given in the file machining dimension feedback. 
a. Use a one-way ANOVA to estimate the standard deviation if the process could be 

adjusted so that the dimension averages across all setups were equal. 
b. Use simulation to compare the performance of the existing feedback controller 

with the proposed controller that makes a complete adjustment based on the aver- 
age for the first five observations after each setup. 

c. In general, we may design a feedback controller by averaging the output from 
the first n observations after each setup. What considerations help you decide 
how many observations should be used to estimate the process average after 
each setup? 

18.3 In a machining process, there was excess variation in the diameter of a precision 
ground shaft. The shaft diameter was measured for all shafts using a complex auto- 
mated gage (that also measured other outputs). Upon investigation, the team discov- 
ered that the dominant cause acted in the measurement family. In particular, the 
measurement bias changed from day to day, consistent with the pattern observed in 
the baseline. To explore this bias change further the team planned an investigation 
where the diameter of the same shaft was measured each hour for four days. A total 
of 32 diameter measurements were made. The data are given in the file precision 
shaft diameter feedback, with the output being the diameter measured from nomi- 
nal. The results show a gradual drift. The team speculated that the drift was caused 
by changes in some (unidentified) environmental conditions. They decided to 
reduce the measurement variation using a feedback controller. 
a. What type of feedback controller (that is, what prediction equation and what 

adjustment rule) would you recommend in this application? 
b. Suppose the team decided to use a feedback controller based on EWMA fore- 

casts with the smoothing parameter alpha equal to 0.4. What kind of a reduction 
in the measurement variation could they expect? 

 
 

CHAPTER 19 

19.1 In the paint film build example introduced in Chapter 3, the baseline standard devi- 
ation in film build (paint thickness) was 0.67 thousandths of an inch. With this vari- 
ation, to ensure a minimum film build of 15-thousandths of an inch, the process was 
centered at 17. The goal was to reduce the standard deviation to 0.35, thereby allow- 
ing for a reduction in the average film build. 

The dominant cause of film build variation was found using a multivari investiga- 
tion to act in the car-to-car family. Despite further effort, the dominant cause was not 
found. The team decided to adopt the process robustness approach. Based on process 
experience, candidates and their corresponding levels were chosen as follows: 
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Candidate Low level High level 

Anode dimension 3.1 3.9 

Conductivity of paint Low High 

Temperature 30 50 

Zone X voltage 450 475 

Zone Y voltage 500 525 
 

The team selected a fractional factorial resolution V experiment with the 16 treat- 
ments given as follows. To reduce the cost of the experiment, panels were used 
rather than cars. With this choice there was a risk of study error. 

 
 

Treatment 
Anode 

dimension 
Conductivity 

of paint 

 

Temperature 

 

X voltage 

 

Z voltage 

1 3.1 Low 30 450 500 

2 3.9 Low 30 450 525 

3 3.1 High 30 450 525 

4 3.9 High 30 450 500 

5 3.1 Low 50 450 525 

6 3.9 Low 50 450 500 

7 3.1 High 50 450 500 

8 3.9 High 50 450 525 

9 3.1 Low 30 475 525 

10 3.9 Low 30 475 500 

11 3.1 High 30 475 500 

12 3.9 High 30 475 525 

13 3.1 Low 50 475 500 

14 3.9 Low 50 475 525 

15 3.1 High 50 475 525 

16 3.9 High 50 475 500 

For each run, five panels were painted. The order of the treatments was random- 
ized. Since the dominant cause acted car to car, the team believed the unknown dom- 
inant cause would act within each run. Film build was measured at five locations on 
each panel. The data for one location are given in the file paint film build robustness 
and in the table that follows. 
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Treatment Order Film build Average Log(s) 

1 14 15.6, 15.3, 15.9, 15.2, 15.8 15.56 –0.51 

2 5 16.0, 16.3, 17.3, 16.2, 16.6 16.47 –0.31 

3 6 15.0, 14.8, 14.9, 15.3, 16.1 15.22 –0.28 

4 2 16.1, 17.6, 17.2, 16.3, 16.1 16.69 –0.16 

5 9 15.7, 15.6, 15.2, 15.2, 15.7 15.49 –0.57 

6 12 17.3, 17.6, 16.8, 17.5, 17.3 17.28 –0.49 

7 13 16.2, 14.4, 15.4, 14.5, 15.9 15.30 –0.09 

8 4 17.3, 16.6, 16.6, 16.4, 17.8 16.94 –0.25 

9 7 16.1, 14.7, 16.2, 14.7, 16.2 15.59 –0.09 

10 16 17.2, 15.8, 16.4, 16.0, 15.8 16.23 –0.24 

11 15 15.4, 15.2, 15.4, 15.3, 15.2 15.29 –1.06 

12 1 16.6, 16.4, 16.4, 16.5, 16.4 16.48 –1.00 

13 3 15.1, 15.4, 15.4, 15.0, 14.4 15.05 –0.41 

14 10 16.8, 16.9, 17.0, 17.3, 16.3 16.89 –0.42 

15 11 15.0, 15.1, 15.0, 14.9, 14.8 14.97 –0.86 

16 8 16.6, 16.7, 16.3, 16.5, 16.3 16.48 –0.79 

 
a. Analyze the data using the standard deviation of film build over the five con- 

secutive panels to measure performance. Is it possible to make the process 
robust to noise variation? What levels of the candidates do you suggest? 

b. The team had a way to adjust the process center. However, we can also use the 
robustness experiment to look for an adjuster. Analyze the data using the average 
film build over the five consecutive panels to measure performance. Are any of 
the candidates adjusters? 

c. In the experiment, the film build at a particular location on five consecutive cars 
(panels) was used to define a run. Suppose, instead, that the five observations 
came from five fixed locations on a single door. What, if any, changes are needed 
in the analysis presented in part a? 

19.2 In a trim plant, customer complaints about seat appearance prompted management 
to assign a team the task of reducing shirring variation. The team proceeded without 
using Statistical Engineering and made a number of mistakes. Seat cover shirring 
was scored on a scale of 1 to 6 using boundary samples by how much cloth was 
gathered by the parallel stitching. Shirring scores of 1 to 4 were acceptable with 1 
being the best. Scores of 5 or 6 resulted from either too much or too little shirring. A 
review of historical data suggested that the observed shirring score over a week cov- 
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ered all six possible values. Next, the team informally checked the measurement 
system. They found the measurement system added little variation. The team 
decided not to look for a dominant cause. Rather they moved directly to assessing 
the feasibility of making the process robust. They used brainstorming to select six 
candidates with two levels each as follows: 

 

Candidate Low level High level 

Leather thickness 0.8 1.2 

Leather toughness Pliable (soft) Stiff (tough) 

Seam width 9 mm 11 mm 

Material feed Top up Bottom up 

Steam to skin bun Used Not used 

Bun thickness +5 mm –5 mm 

The team planned a resolution III fractional factorial experiment with 16 runs 
(one for each treatment) as follows: 

 
 

Treatment 
Leather 

thickness 

 

Seam width 
Leather 

toughness 
Machine 

feed 

 

Steam 
Bun 

thickness 

1 High Low Tough Top up Yes High 

2 High Low Soft Bottom up No Low 

3 Low High Tough Top up No Low 

4 Low High Soft Bottom up Yes High 

5 High High Tough Bottom up Yes Low 

6 High High Soft Top up No High 

7 Low Low Tough Bottom up No High 

8 Low Low Soft Top up Yes Low 

9 High High Tough Bottom up No Low 

10 High High Soft Top up Yes High 

11 Low Low Tough Bottom up Yes High 

12 Low Low Soft Top up No Low 

13 High Low Tough Top up No High 

14 High Low Soft Bottom up Yes Low 

15 Low High Tough Top up Yes Low 

16 Low High Soft Bottom up No High 
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Each run consisted of three seats (repeats). The runs were conducted in the treat- 

ment order given in the table. The data are given in the file seat cover shirring 
robustness and reproduced as follows: 

 
Treatment Order Seat 1 Seat 2 Seat 3 Average score 

1 13 3 1 2 2.0 

2 16 1 2 1 1.3 

3 7 2 2 2 2.0 

4 6 2 2 2 2.0 

5 10 2 1 1 1.3 

6 1 3 1 3 2.3 

7 11 4 2 1 2.3 

8 15 2 2 4 2.7 

9 5 1 2 2 1.7 

10 3 4 5 2 3.7 

11 14 3 3 2 2.7 

12 9 2 3 3 2.7 

13 8 1 2 2 1.7 

14 2 2 2 3 2.3 

15 4 1 4 2 2.3 

16 12 2 3 1 2.0 
 

a. Explain why choosing the process output as a measure of variation (that is, high 
scores come from either too much or too little shirring) was a poor one. 

b. The goal is to find process settings that lower the average shirring score. Can we 
use any of the candidates to achieve the goal? 

c. Each run consisted of three seats. Discuss this choice in the context of a robust- 
ness experiment. 

For the last two parts of this question, suppose the first three candidates (leather 
thickness, leather toughness, and seam width) used in the robustness experiment 
were normally varying rather than fixed inputs. 
d. How should the levels of the first three inputs have been chosen? 
e. Discuss changes you would make to the analysis you conducted in part b. 

19.3 Torsional rigidity of the weather stripping was the dominant cause of door assembly 
problems. Management set a goal of reducing standard deviation in torsional rigid- 
ity to 0.3. A baseline investigation found the variation in torsional rigidity was 
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roughly 0.55 mm and that the dominant cause acted over the short term and certainly 
within any half hour. The team looked briefly for a dominant cause of rigidity vari- 
ation without success. Next, they planned a robustness experiment with four candi- 
dates at two levels each, chosen based on engineering judgment. The candidates and 
levels are: 

 
Candidate Low level (–1) High level (+1) 

Heat (pre) 100 700 

Extruder RPM 22 26 

Tension (pre) 1 5 

Water flow 2 6 

 
The team planned a full factorial experiment with 16 runs, one for each treatment. 

The correspondence between treatments and candidate levels is given in the table 
that follows. 

 
 

Treatment Heat Extruder RPM Tension Water flow 

1 –1 –1 –1 –1 

2 –1 –1 –1 1 

3 –1 –1 1 –1 

4 –1 –1 1 1 

5 –1 1 –1 –1 

6 –1 1 –1 1 

7 –1 1 1 –1 

8 –1 1 1 1 

9 1 –1 –1 –1 

10 1 –1 –1 1 

11 1 –1 1 –1 

12 1 –1 1 1 

13 1 1 –1 –1 

14 1 1 –1 1 

15 1 1 1 –1 

16 1 1 1 1 
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Each run consisted of running the process for half an hour after the candidate lev- 

els had been reached. Within each run, 10 weather-strip samples were selected 
spread out over the half hour. The order of the runs was randomized. The torsion 
rigidity of each of the 10 weather-strip samples for each treatment is given in 
columns s1 to s10 of the table that follows and in the file weatherstrip torsional 
rigidity robustness. 

 
 

Treatment Order s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

1 13 10.3 13.0 11.5 11.8 10.7 9.9 10.7 11.5 11.0 11.1 

2 6 11.5 13.0 10.4 11.1 10.9 10.6 12.0 9.3 9.2 9.3 

3 9 11.6 13.0 10.4 16.0 10.3 10.8 11.5 11.0 11.3 10.9 

4 1 11.5 11.7 10.4 11.7 14.0 11.7 10.4 11.7 10.4 10.4 

5 3 14.0 11.7 11.7 19.0 11.9 11.7 12.1 13.0 11.1 11.0 

6 11 22.0 15.0 18.3 11.7 20.3 21.0 12.6 13.6 14.7 15.1 

7 5 9.1 9.6 10.2 9.8 9.0 9.7 10.0 12.0 9.0 8.8 

8 14 10.0 9.1 10.6 10.4 10.8 11.0 11.1 10.8 10.5 10.8 

9 2 11.7 12.5 11.9 11.7 20.0 14.0 10.4 11.5 11.7 20.0 

10 10 10.3 11.6 10.5 10.6 13.0 14.0 11.7 10.3 15.0 11.8 

11 7 10.3 10.5 11.0 11.4 9.8 10.4 11.7 11.8 11.5 11.9 

12 15 11.6 11.0 11.4 11.3 12.0 10.6 10.9 10.7 10.7 10.7 

13 16 10.6 10.7 11.6 10.6 10.7 22.0 11.0 10.4 10.4 23.0 

14 8 9.1 10.4 10.6 11.4 10.9 10.4 10.8 10.9 11.0 11.6 

15 12 10.3 11.0 12.0 12.1 10.5 10.7 11.3 11.4 10.8 10.9 

16 4 10.4 10.4 10.4 10.5 10.9 11.4 9.0 9.6 9.8 10.2 
 

a. To analyze the results of this robustness experiment, what performance meas- 
ure(s) do you recommend and why? 

b. Analyze the experimental results using your chosen performance measure(s). 
What can you conclude? 



Exercises CD–75 
 

 
CHAPTER 20—NO EXERCISES 

CHAPTER 21 

21.1 Discuss whether lessons learned are properly maintained in corporate memory in 
your organization. What could be done to improve the situation? 

21.2 In the paint film build example described in Chapter 19, the team found new process 
settings that resulted in reduced car-to-car variation in film build. To validate the 
proposed solution, 80 cars were painted over one day with the settings given in the 
following table. These were the best settings found in the robustness investigation. 
The film build values from five specific positions on one door for each of the cars 
are available in the file paint film build validation. 

 
 

Candidate Setting 

Anode dimension 3.5 (midpoint) 

Conductivity of paint High 

Temperature 30 

Zone X voltage 475 

Zone Y voltage 500 

 
a. The baseline film build standard deviation was 0.68. The problem goal was to 

reduce the standard deviation to 0.35, and the robustness experiment results sug- 
gested that changing settings would reduce the standard deviation to about 0.37. 
Has the solution been validated? 

b. What, if anything, do the validation results tell us about the home of the dominant 
cause in the remaining variation? 

21.3 In the truck pull example described in Chapter 17 and Exercise 17.1, a feedfor- 
ward controller was implemented to compensate for the effect of truck-frame 
geometry on pull. After the feedforward system had been operating successfully for 
some time, management decided to review its operation. The four frame geometry 
measurements and left and right caster and camber were recorded for roughly a 
month of production consisting of over 6600 trucks. The data are given in the file 
truck pull validation. 
a. The standard deviations for caster and camber before implementation of the feed- 

forward controller can be estimated from the 100-truck investigation described in 
Chapter 17. From the same investigation, the team predicted the possible reduc- 
tion in standard deviation using a feedforward controller. A summary is given in 
the following table. 
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Characteristic 
Baseline standard 

deviation 
Predicted reduction in 

standard deviation 

Left caster 0.90 0.18 

Right caster 0.83 0.20 

Left camber 0.51 0.13 

Right camber 0.41 0.10 
 

Do the results of the investigation validate the reduction in left and right caster 
variation due to the feedforward controller? 

b. For each of the two caster characteristics, conduct a regression analysis to see if 
the feedforward controller can be improved. Recall that the feedforward controller 
should be compensating for variation in the frame geometry. 

c. Repeat the analysis in parts a and b for left and right camber. 
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CHAPTER 1—NO EXERCISES 

CHAPTER 2 

2.1 The word variation is used in other contexts to describe a difference between a 
realized and target value such as in budget variation. How does this use com- 
pare to variation as discussed in Chapter 2? 

We define two types of variation, an off-target component and a part-to-part compo- 
nent. Budget variation only describes the off-target component of variation. 

 
2.2 We have heard the following comment many times from manufacturing engi- 

neers: “The cause of the variation is the product design—what can you 
expect me to do?” Discuss the comment in light of the definition of cause in 
Section 2.2. 

Product design cannot be the cause of part-to-part variation because it does not 
change from part to part. It is, however, possible that changes to the product design 
may solve the problem, though in most cases, the process produces good parts. This 
suggests improvement is possible with the existing design. 

 
2.3 Profile A is a measure of deviation of the actual from the ideal shape of a 

camshaft lobe over one region (A) of the lobe. The target value is zero and the 
upper specification limit is 250 microns. Use the data in the file camshaft lobe 
runout baseline to summarize the variation in this output. Do all lobes exhibit 
the same variation? Is there any time pattern in the variation? 

We use a combination of plots and numerical summaries. Some typical plots follow. 
The histogram (and the subsequent numerical summary) suggests the full extent of 
variation is 59 to 292. 
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Variable N Mean Median TrMean StDev SE Mean 
profile  A 1296 136.32 130.00 134.54 39.83 1.11 

 

Variable Minimum Maximum Q1 Q3 
profile  A 59.00 292.00 104.00 164.00 

Stratifying by lobe we see the average and variation in profile A is roughly the 
same across all 12 lobes. 
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We need to be careful looking at the data by time. As stored, the 1296 profile 
A values come from 108 camshafts. The camshafts are given in production 
sequence. 

We can plot profile A for each of the 12 lobes by camshaft in order of produc- 
tion. The plot shows the 12 values for each camshaft. There are no strong time 
effects that influence all lobes in the same way. 
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To determine if there is a time effect on individual lobes, we can look at run 
charts of profile A values for individual lobes. For example, for lobe 12 we get: 
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There are no time patterns evident for the different lobes. 
A common mistake is to create the run chart of all 1296 profile A values as 

follows: 
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The observations are not ordered by time because each group of 12 values 
comes from the 12 lobes on a single camshaft. In this plot, large lobe-to-lobe 
effects could be misinterpreted. 
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2.4 Construct histograms and run charts for output 1 and output 2 given in the data 

file chapter 2 exercise 4. Find the average and standard deviation for each out- 
put. Assume the target value and upper specification limit for these lower-is- 
better outputs are 0 and 35. 

a. Is the variation the same for each output? 
b. Is the nature of the variation over time the same for each output? 

 
The results are: 

Descriptive Statistics: output1, output2 
 

Variable N Mean Median TrMean StDev SE Mean 
output1 100 11.634 10.713 11.364 4.882 0.488 
output2 100 11.634 10.713 11.364 4.882 0.488 

Variable 
output1 

Minimum 
3.017 

Maximum 
34.488 

Q1 
8.539 

Q3 
14.041 

  

output2 3.017 34.488 8.539 14.041   
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a. The standard deviations and histograms are the same for both outputs. 
b. Output 2 is ordered from smallest to largest over time. 
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2.5 You may convince yourself that the formulas for combining means and stan- 

dard deviations given in Section 2.4 are true with the following numerical 
demonstration you can conduct in MINITAB. Generate two columns of 100 val- 
ues sampled from some model (in MINITAB: Calc → Random Data → your 
choice of model and parameters, for example, Normal with mean and standard 
deviation 0 and 1, respectively). Then, calculate two new data columns. Let one 
column be the sum of the original two columns and the other the difference. 

a. Find the standard deviation and average for each of the four columns. 
b. Calculate the sum and differences of the averages for the first two columns. 

How do these compare to the average of the other two columns respectively? 
c. Calculate the standard deviation for the sum and difference using  the 

“square root of sum of squares” formula given by 2.1. How do the results 
compare to the standard deviations for the last two columns? 

 
a. An example of the results you will get is: 

 

Descriptive 
 
Variable 

Statistics: 
 

N 

C1, C2, sum, 
 

Mean 

diff 
 

Median 

 
 

TrMean 

 
 

StDev 

 
 

SE Mean 
C1 100 0.061 0.016 0.055 1.126 0.113 
C2 100 –0.0976 –0.0853 –0.0904 0.9145 0.0915 
sum 100 –0.037 –0.226 –0.048 1.571 0.157 
diff 100 0.158 0.222 0.167 1.320 0.132 

Variable 
C1 

Minimum 
–3.214 

Maximum 
2.801 

Q1 
–0.787 

Q3 
0.802 

  

C2 –2.3400 2.3015 –0.6814 0.5067   
sum –3.482 4.000 –1.181 1.221   
diff -3.134 3.308 -0.746 1.115   

b. The sum and difference of the averages for the first two columns equal the aver- 
age of the sum and difference columns, respectively. 

c. For the sum (and difference) of C1 and C2 we have 
 

stdev(C1 ± C2) = 
 

In the example data 
deviation of the last two columns. 

1.45, which closely matches the 
standard 

 

2.6 At a project review, the team presented the following summary of their investi- 
gation based on standard deviations. 

 

Source of variation Percent of total 

Measurement system 30 

Identified cause 50 

Unidentified causes 81 

1.1262+0.91452
 

stdev(C1)2 stdev(C2)2
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a. The reviewing manager questioned the numbers in the second column of the 

table because they did not add to 100. Is there an error? Explain. 
b. By what percentage can the process standard deviation be reduced by elimi- 

nating the contribution of the identified cause? 
c. Is the identified cause a dominant cause? 

 
a. There is no error. The percentages are calculated on the standard deviation scale. 

Recall that standard deviations combine using the square root formula as illus- 
trated by Equation (2.1). The total is given by 1. 

b. If we eliminate the contribution of the identified cause the remaining variation is 
given by 0.302  0.812   0.85. So the process standard deviation could be reduced 
by roughly 15%. 

c. No. 
 

2.7 In Chapter 1, we discussed a project to reduce variation in pull, an alignment 
characteristic of light trucks. Recall that 

Pull = 0.23*(right caster – left caster) + 0.13*(right camber – left camber) 

and that the data for two months’ production are stored in the file truck pull 
baseline. The data are summarized in the following table. 

 
Output Average Standard deviation 

Left camber 0.257 0.129 

Right camber 0.249 0.130 

Left caster 3.519 0.224 

Right caster 4.519 0.243 

Pull 0.231 0.082 
 

a. Use the formula for pull and the results for how averages and standard devi- 
ations combine to predict the average and standard deviation for pull given 
by the last row in the table indirectly from the component averages and stan- 
dard deviations. 

b. Suppose you had the resources to reduce the variation in one of the align- 
ment angles by 50%. Which angle would you choose? By how much, approx- 
imately, would the pull standard deviation be reduced? 

 

a. The derived standard deviation for pull is  
 

0.08 
 

The derived standard deviation for pull is not exactly 0.082, because the align- 
ment angles do not vary independently; there is a small correlation. Note that the 
averages of the components play no role in the standard deviation. 

0.302 0.502 0.812
 

0.232 *0.2242 0.2432 0.132 
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The derived average is: 

0.23(4.519 + 3.519) + 0.13(0.249 + 0.257) = 0.229 
 

There is some rounding error, so this value does not match the pull average in the 
table. 

b. The largest reduction in overall standard deviation would be achieved by reduc- 
ing the variation in the right caster. Reducing the variation in right caster by 50% 
would reduce the variation in pull to roughly 

 

 ( ) ( )2 2 2 2 2 20.13 * 0.13 0.129 0.23 * 0.224 0.121 0.063+ + + =  
 

This corresponds to approximately a 20% reduction. 
 

CHAPTER 3 

3.1 For a problem of interest to you speculate about the likely costs and feasibility 
of implementing each of the possible variation reduction approaches. 

The solution is dependent on the chosen problem. 
 

3.2 Variation in the location of a drilled hole in a machined casting can cause poor 
fits when the part is bolted to an engine. To reduce this variation, an engineer 
considers a variety of possible approaches. 

a. A vision system is available that can measure location on 100% of the parts 
and reject those that it judges to be out of specification. What are the advan- 
tages and disadvantages of such an approach? 

b. Institute a feedback controller by measuring two parts every hour. If hole 
location on either part is outside of specification, stop and adjust the process. 
When is such a scheme likely to be effective? 

c. A third choice is to find a dominant cause of the variation. What are the 
advantages and disadvantages of this strategy? 

d. If a dominant cause can be discovered, what options does the engineer have? 
 

a. 100% inspection would ensure that no out-of-specification parts were shipped to 
the customer, assuming there were no measurement errors. The inspection sys- 
tem may be expensive to install and run. Also, we need to specify how to handle 
rejected parts. 

b. For feedback control to be effective, the short-term variation in hole location 
must be substantially smaller than the hour-to-hour variation. There must also be 
a way to adjust the center of the process. 

c. Finding a dominant cause of hole location variation would be valuable informa- 
tion that may lead directly to a low-cost solution. However, finding a dominant 
cause may be difficult or expensive. Also, the dominant cause may be outside the 
control of local management or difficult to control. 
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d. With knowledge of a dominant cause, the engineer can consider the variation 

reduction approaches that require knowledge of a dominant cause, namely: 
fixing the obvious, desensitizing the process, and feedforward control. Any of 
the non-cause-based approaches are also still options. 

 

CHAPTER 4—NO 

EXERCISES CHAPTER 5 

5.1 Briefly discuss the advantages and disadvantages of the following—be sure to 
think of potential errors as described within the QPDAC framework. 

a. To estimate the baseline performance of a grinding process, 100 consecutive 
pistons were sampled and the diameters were measured. 

b. To investigate a proposed change to a chemical process, the investigators 
tried the change in a pilot process rather than the production process. 

 
a. The given plan results in quick and easy data collection. However, there is a 

danger that process variation will be underestimated since 100 consecutive 
pistons may be more similar than 100 pistons chosen over a longer time 
frame (study error). Also, 100 pistons is a relatively small  sample.  See 
Table S6.1 in the supplement to Chapter 6 to get a better idea of the uncer- 
tainty in the estimate of the process standard deviation from a small sample 
size (sample error). 

b. An investigation on the pilot process would be cheaper and easier than using the 
production process. The main concern is whether results from the pilot process 
can be scaled up to the regular process (study error.) 

 
5.2 In the camshaft lobe BC runout problem described in Chapter 1, the team 

selected 50 parts (10 per day over 5 days) and measured the BC runout for 
each of the 12 lobes on each camshaft to quantify the baseline. The 600 runout 
measurements are stored in the file camshaft lobe runout baseline original. 
Conduct an analysis of these data. Are your conclusions different from those in 
Chapter 1? Why? 

From the MINITAB results that follow, we see that the variation in BC runout as 
measured by the standard deviation is now much larger at 31.7. However, look- 
ing at the numerical or graphical summary, we see that the data contain a large 
outlier. In particular, observation number 74 is 1130. A transcription error put 
the decimal point in the wrong place. The value should have been 11.3. This mis- 
take was readily identified and corrected before proceeding with the rest of the 
analysis. 
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Descriptive Statistics: BC runout  

Variable 
BC runout 

N 
1296 

 Mean 
13.51 

Median 
11.10 

TrMean 
12.28 

StDev 
31.69 

SE Mean 
0.88 

 

Variable Minimum Maximum Q1 Q3 
BC runout 2.60 1130.00 7.43 17.00 
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5.3 To assess a measurement system used to check the diameter of an engine bore, 
an investigator plans to repeatedly measure the same four (of the eight) bores on 
five blocks sampled from a shift of production. 

a. Discuss the advantages and disadvantages of using 10 rather than 5 blocks. 
b. In the investigation, all the blocks produced over one shift were available for 

study. Give two considerations that the investigators should take into 
account in making the choice of available blocks. 

c. The plan was to make all measurements in a single day. Discuss the advan- 
tages and disadvantages of making the measurements over a longer time 
period. 

d. When would the investigator be better off devoting the available resources to 
measuring all eight bores on fewer engine blocks? 

 
a. Using 5 blocks rather than 10 would be cheaper and quicker. However, with 

fewer blocks there is a greater chance of sample error. The performance of the 
measurement system on the chosen 5 blocks may be different (better or worse) 
than its performance on other blocks. 

b. The investigator needs to trade off cost and convenience with the risk of study error. 
The key question is whether the performance of the measurement system is likely 
to be different when examining blocks from other days. It may be, for example, that 
engine bores from a single day have similar dimensions and that the measurement 
system works well only for some dimensions. 
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c. Again the investigator needs to trade off cost and convenience with the risk of study 

error. Here the key question is whether the properties of the measurement system 
change substantially over time. Measurement systems, like other processes, change 
over time unless properly maintained. As we shall see in Chapter 7, we recom- 
mend, if at all possible, that measurement investigations compare the measure- 
ments over a longer time period. 

d. Having fewer engines makes the logistics of the investigation easier. In the meas- 
urement investigation to repeatedly measure the bores on the same block, the 
team had to move the block back into the process before the gage. Measuring all 
the bores on fewer blocks would be a good idea if we expected the measurement 
system to be sensitive to the bore number (though if this were known, another 
option would be to focus on the known problem bores). If, on the other hand, the 
dimensions of all the bores on a particular block were similar, using fewer blocks 
might prevent us from seeing the full range of bore dimensions in the measure- 
ment investigations. 

 
5.4 You are a manager with the responsibility to decide if you should change the 

supplier for a tooling insert. You receive a report from your process engineer 
who has conducted an investigation into a new insert. He gives you the follow- 
ing verbal report and recommendation: 

Our current insert has an average life of 1105 parts. To assess the perform- 
ance of the new supplier, we asked them to supply 10 inserts. We checked 
the inserts out on one of our machines last week and got an average of 
1300 pieces. Since the cost is the same, I think we should switch to the new 
inserts. 

Using the QPDAC framework, think of five questions you would ask about 
the conduct of the investigation before you might accept the recommendation. 

 

You should ask questions like: 

Is the machine used for the investigation typical of all machines we use? 
Did the manufacturer supply 10 specially good inserts? How can we tell? 

How much variation was there in the number of pieces cut by the 10 new inserts? 
What data were used to estimate the average life of the current inserts? 

Are the environmental and production conditions in the week of the investiga- 
tion of the new inserts typical? 
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CHAPTER 6 

6.1 In Chapter 1, we described a problem in terms of the lobe geometry of 
camshafts. The data are given in the file camshaft lobe runout baseline. Quan- 
tify the problem baseline for the following output. 

a. BC runout 
b. Angle error 

 
a. We summarize the data using a histogram and a run chart as follows. The run chart 

plots the 12 lobe BC runout values for the 108 camshafts in production order. 
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Variable N Mean Median TrMean StDev SE Mean 
BC runout 1296 12.643 11.100 12.271 6.389 0.177 

 

Variable Minimum Maximum Q1 Q3 
BC runout 2.600 33.900 7.425 17.000 

The baseline standard deviation is 6.4, and the full extent of variation is 2.6 to 
33.9 microns. We see no obvious patterns over time. We can also look at run charts 
for each lobe separately. 

b. Looking at angle error we use the same summaries as in part a. 
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Variable N Mean Median TrMean StDev SE Mean 
angle 1296 –21.30 –18.00 –20.04 71.50 1.99 

 

Variable Minimum Maximum Q1 Q3 
angle –241.00 155.00 –67.00 30.00 

The baseline standard deviation is 71.5 and the full extent of variation is 
roughly –240 to 155. There is a weak pattern over time. 

 
6.2 Many programs such as Excel cannot easily handle missing observations. 

MINITAB is an exception. Missing values are often stored using a special 
numerical code (–99 is common). These special codes can result in much confu- 
sion and lead to incorrect conclusions. Consider the data rod thickness baseline 
with missing observation. In the file, there are two outputs. The output thick- 
ness_–99 uses a numerical code of –99 for missing observations, while thick- 
ness_missing uses the MINITAB missing observation symbol (*). Quantify the 
baseline for these two outputs. Which data summaries show the missing obser- 
vation and which do not? 

If we forget we are using a special code for a missing observation, it is not readily 
apparent in the numerical summary and the –99 inflates the standard deviation by 
about 9%. The code for the missing observation is easily identified in the graphical 
display if the code is extreme relative to the usual values. Using a missing observa- 
tion symbol is much preferred over a special numerical code. 

 

Variable N N* Mean Median TrMean StDev 
Thickness_–99 800 0 34.426 36.000 34.832 11.981 
Thickness_miss 799 1 34.593 36.000 34.861 11.018 

 

Variable SE Mean Minimum Maximum Q1 Q3 
Thickness_–99 0.424 –99.000 59.000 28.000 43.000 
Thickness_miss 0.390 2.000 59.000 28.000 43.000 
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6.3 The baseline investigation for the V6 piston diameter example was described in 
Chapter 5. The data are given in the file V6 piston diameter baseline. Suppose 
the data were collected so that all the pistons from a given hour were collected 
at the start of the hour. Now the data come in subgroups as defined by hour. 
What summaries used in the baseline analysis are affected by the subgrouping? 
When taking the subgrouping into account are the conclusions any different 
than those derived in Chapter 5? 

The subgrouping in the data affects the interpretation of the run chart. The run chart 
(as given in Chapter 5) assumes the observations are equally spaced in time. Since 
the data are collected so that the five observations in each subgroup are much closer 
together in time then the observations from subsequent hours a better display would 
plot the diameters by hour (time). 
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There appears to be no special pattern over time. The conclusions for the baseline 
would be unchanged. 

 
6.4 Based on customer complaints concerning installation difficulties, a team 

investigated variation of a key fascia dimension. To establish a baseline, they 
measured the dimension on 147 fascias sampled from one month’s production. 
The data are given in the file fascia dimension baseline. Using appropriate sum- 
maries of the data, quantify the baseline. Are there any concerns? 

 
We summarize the baseline data numerically and using a histogram and run chart. 

 

Variable N Mean Median TrMean StDev SE Mean 
dimension 147 7.303 7.000 7.256 2.261 0.186 

 

Variable Minimum Maximum Q1 Q3 
dimension 2.000 12.000 6.000 9.000 
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There is some evidence of an increase in the fascia dimension over the month of 
the baseline investigation. This suggests the investigation was not conducted over a 
long enough period of time. We need to plan a new baseline investigation. 

 
 
 

CHAPTER 7 

7.1 In a process improvement problem to improve the quality of a roof panel, the 
measurement system (specially designed for the project) counted the number of 
updings on each panel. To assess the measurement system, the number of 
updings on 20 bad panels and 20 good panels was counted twice. The data are 
given in roof panel updings measurement. 

a. Can this investigation be used to assess the measurement variation of the 
counting process? Explain. 

b. Can this investigation be used to assess the bias of the counting process? 
Explain. 

c. The same operator counted all panels. Does the order in which he makes the 
counts matter? It is most convenient to count the same panel twice in a row. 
Is this a good idea? 

d. A scatter plot of the first versus the second measurement is given as follows. 
Note that some plotting symbols correspond to more than one pair of meas- 
urements? What does the scatter plot tell you about the counting process? 
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e. This investigation was conducted over one hour. What are the advantages 
and disadvantages of spreading the two measurements on each panel over 
two days? 

f. Can the counting process discriminate between good and bad panels? 
 

a. Yes. By measuring each panel twice we can assess measurement variation. How- 
ever, we may underestimate the variation if important causes of measurement 
variation do not vary sufficiently during the investigation. 

b. No. We cannot assess bias since we do not know the true upding count for 
each panel. 

c. It is best to randomize the order of the panels. The danger with measuring the 
same panel twice in row is that on the second count the operator will remember 
and be influenced by the first count. 

d. The points lie close to the 45° line and there is a clear separation between good 
and bad panels. This suggests the measurement system is adequate. 

e. Using two days for the investigation reduces the risk of study error but takes 
longer. 

f. Yes. See part d. 
 

7.2 To monitor the process that produces engine blocks, piston bore diameters are 
measured on every block because they are key characteristics. Each engine 
block has eight bores. The bore diameter is measured at three different heights 
in each bore (bottom, middle, and top) and at two different orientations at each 
height. Because the measurement process is automated, there are no operators. 
A measurement investigation was conducted over a day where the diameter of 
every bore on four blocks was measured four times each. The main concern was 
out-of-round, given by 10,000 times the difference of the two diameters at a par- 
ticular height. The data are given in the file block bore diameter measurement. 
From a baseline investigation the out-of-round standard deviation was 22.8. 
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a. Determine the discrimination ratio. Is the measurement system adequate? 
b. What would have been the advantage and disadvantage of conducting the 

measurement investigation over a longer time period? 
 

a. Out-of-round is measured four times at each of 96 locations (4 blocks by 8 bores 
by 3 heights). To analyze the data, we define a new characteristic (called 
“block_bore_height”) to uniquely identify each of the 96 locations. Plotting out- 
of-round by this new characteristic we get 
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The measurement variation is roughly comparable across the different blocks, 

bores, and heights. To estimate the measurement variation from this data we use 
a one-way ANOVA analysis; part of the results follow. 

Analysis of Variance for out-of-round 
 

Source DF SS MS F P 
block_bore_height 95 177032.7 1863.5 24.94 0.000 
Error 288 21516.3 74.7   
Total 383 198549.0    

Pooled StDev = 8.643     

The variation due to the measurement system is estimated as 8.6. We cannot 
assess the stability of the measurement system here. The order of measurements 
was not preserved and, in any case, all the measurements were conducted over a 
single day. 

Using the baseline standard deviation we can solve for an estimate of the 
standard deviation attributable to the process. We get 21.1 ( = 22.82 − 8.6432  ). 
The measurement system discrimination ratio is thus 2.44, and we conclude that 
the measurement system is not the dominant cause but that the measurement 
system should be improved before proceeding with the Statistical Engineering 
algorithm. 

b. Spreading the measurements over a longer time period would have delayed reach- 
ing a conclusion about the adequacy of the measurement system. An advantage is 
that the longer time would have allowed slowly changing causes to act. From the 
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baseline investigation, the team knew that the dominant cause acted within a day. 
Thus, a single day was long enough for the measurement investigation. 

 
7.3 The following MINITAB results and graphs arise from a measurement system 

investigation in which two different operators measured five parts three times 
each. The five parts were selected with initial measured values spread out over 
the full extent of variation, 0 to 8. The data are given in the file chapter 7 exer- 
cise 3. The two operators worked different shifts so the parts were saved from 
one shift to the next. The results include an edited ANOVA analysis as sug- 
gested in the supplement to Chapter 7 and the default gage R&R analysis in 
MINITAB. 

 

Analysis of Variance for measurement  
Source DF SS MS F P 
part 4 230.819 57.705 81.25 0.000 
Error 25 17.754 0.710  
Total 29 248.573   

 

Pooled StDev = 0.8427 
 

Gage R&R  
  %Contribution 
Source VarComp (of VarComp) 

Total Gage R&R 0.900 8.62 
Repeatability 0.425 4.07 
Reproducibility 0.475 4.55 

operator 0.475 4.55 
Part-To-Part 9.547 91.38 
Total Variation 10.447 100.00 

 

 StDev Study Var  %Study Var 
Source (SD) (5.15*SD)   (%SV) 
Total Gage R&R 0.94876 4.8861 29.35 

Repeatability 0.65207 3.3582 20.17 
Reproducibility 0.68917 3.5492 21.32 

operator 0.68917 3.5492 21.32 
Part-To-Part 3.08975 15.9122 95.59 
Total Variation 3.23214 16.6455 100.00 

 

Number of Distinct Categories = 5 
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Gage R&R (ANOVA) for measurement 

 
 

Gage name: 
Date of study: 
Reported by: 
Tolerance: 
Misc: 
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a. What do the given results tell us about the bias and variation of the measure- 
ment system? – 

b. In the gage R&R results, the X chart by operator is out of control. What does 
this mean? 

c. In the gage R&R results, why is the sum of the % study variation column 
not 100%? 

d. What is the discrimination ratio (D) for this system? How does the part selec- 
tion procedure influence this ratio? 

e. The gage R&R is about 29%, yet D is small. Why? 
f. The results suggest a small operator-to-operator difference. This observed 

difference may be due to a difference in method or a drift of the system over 
the two shifts. How can you separate these two possibilities? 

 
a. We estimate the standard deviation due to the measurement system as 0.84, the 

pooled standard deviation from the ANOVA. This calculation corresponds to 
the formula given in Section 7.2. We cannot assess measurement bias because 
the true dimensions are not known. As an aside, it is always a good idea to also 
plot the measured values versus part number as follows. 
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– 
b. The points plotted on the X chart are the average measurement for a particular 

part and operator. The control limits are determined by the variation of the 
measurements within the 10 part and operator combinations. If the measure- 
ment system is able to distinguish among the parts, there should be many points 
outside the control limits. Here, out-of-control signals indicate a good measure- 
ment system. 

c. The column partitions the percent variation due to the measurement system and 
the parts with the overall standard deviation as the divisor. To combine standard 
deviations we need to square and add. We see that 29.352 + 95.592 = 1002. 

d. To calculate the discrimination ratio, we can estimate the overall standard devia- 
tion from the full extent of variation as 8 / 6 = 1.33 (we are assuming a bell- 
shaped  histogram  in  this  calculation).  Thus  we  can  estimate  the  standard 
deviation due to the process as 1.03 =( 1.332  − 0.842  ). The corresponding esti- 
mate for the discrimination ratio D is 1.22 (= 1.03 / 0.84). The selection of the 
parts plays no role in the calculation of D. We assume that the variation within 
each part is the same regardless of true size. 

e. The denominator of the gage R&R calculation is the variation observed in the 
investigation. In this case, the overall standard deviation is 2.93, much larger than 
the estimated baseline variation, which decreases the R&R. The reason for the 
large overall variation is the part selection procedure. 

f. With the plan, there is no way to distinguish the operator and shift effects (we say 
the effects are confounded). If we want to be able to separate the effects, we need 
another investigation in which both operators measure parts at the same time over 
several shifts. 

 
7.4 To assess the variation in the system designed to measure camshaft lobe geom- 

etry over time, the same camshaft was measured daily for a month. At each 
measurement, a number of characteristics (for example, angle error, BC runout, 
taper, and so on) on each lobe were determined. The data are given in the file 
camshaft lobe runout measurement stability. Is there evidence of time-to-time 
variation in this measurement system? 
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Checking for time-to-time variation is difficult due to the large number of output 
characteristics and lobes. We plot each output versus day, stratifying by lobe number. 
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Examining a run chart of any characteristic versus the order in the MINITAB 
worksheet may be misleading since much of the observed pattern may be due to dif- 
ferences between lobes. 

Most of the characteristics show a pattern similar to the one observed for BC 
runout, where the gage appears stable except for the results on day 17. Radius error 
has unusual results for day 8. 

 
7.5 In a process that produced V8 pistons, problems occurred when pistons in 

inventory were remeasured (for an audit) and found to be out of specification. 
Since the process used 100% final inspection, this could only occur if there was 
a problem with the measurement system. This was puzzling because a recent 
gage R&R investigation at the final gage had concluded that the measurement 
system was acceptable. As a result, the team decided to conduct a long-term 
measurement investigation. Two pistons were chosen to span the range of diam- 
eter normally seen. Each piston was measured four times a day (spread out over 
the day) for 12 days. During that time the regular gage calibration was per- 
formed every four hours. The data are given in the file V8 piston diameter meas- 
urement stability. 

a. Does the measurement system drift over time? 
b. What effect does the regular gage calibration have? 
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a. To assess drift we plot the diameter for each piston over time. 
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There is clear evidence of a drift over time. Note that since the pistons were cho- 
sen to span the normal range of diameters, the amount of drift seen is substantial. 

b. The gage was recalibrated a number of times during the investigation. However, 
looking at the run chart, the regular calibration appears to have no effect. 

 
7.6 Consider the brake rotor balance example described in the case studies. In the 

measurement investigation, three rotors were specially selected: one well bal- 
anced, another poorly balanced, and the final rotor requiring weight near the 
specification limit of 0.5. The three rotors were measured twice by each of the 
three gages on three separate days. There is no operator effect since the gages 
are automated. The 54 measurements are given in brake rotor balance measure- 
ment. The analysis given in the case study focuses on the measurement of the 
weight needed to balance the rotor. However, the location (or orientation) of the 
weight needed to move the rotor’s center of gravity is also important. Can the 
measurement system consistently determine the orientation of the required bal- 
ance weight? From the baseline investigation, the orientation of the weight was 
roughly uniform from 0° to 360°. 

 
With an output like orientation measured in degrees we must be careful when ana- 
lyzing the data. The data are circular since 0° is the same as 360°. Plotting the data 
for orientation by the three rotors we see that for this data we can ignore the circu- 
lar nature of the output since none of the measured orientations are near 0°. 
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A one-way ANOVA analysis gives: 

 

Analysis of Variance for orientation  
Source DF SS MS F P 
rotor 2 43340.3 21670.1 589.70 0.000 
Error 51 1874.1 36.7  
Total 53 45214.4   

    Individual 95% CIs For Mean 
    Based on Pooled StDev 
Level N Mean StDev ---------+---------+---------+------- 
1 18 132.57 8.11 (*) 
2 18 175.47 4.08 (*) 
3 18 201.26 5.27 (-*) 

---------+---------+---------+------- 
Pooled StDev = 6.06 150 175 200 

The measurement variation is estimated as roughly 6°, the pooled standard 
deviation. The team decided that the measurement system was adequate, since 
the measurement variation was small relative to the full extent of variation. 

 
7.7 If necessary, measurement variation can be reduced by applying the Statistical 

Engineering algorithm. Describe how each of the seven variation reduction 
approaches might be used to improve a measurement system. 

Fix the Obvious 
If there are substantial operator-to-operator or gage-to-gage differences, we may 
reduce measurement variation by using fewer operators or gages or by training the 
operators. 

Desensitization 
With desensitization, we need to change some input in the measurement system that 
makes it less sensitive to variation in a known dominant cause of measurement varia- 
tion. Desensitization was the chosen approach to improve eddy current measurements 
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of rotor hardness. The team explored changing a number of settings to see if it was 
possible to make the measurement system less sensitive to variation in the amount of 
dirt on the casting, the dominant cause of measurement variation. Ultimately, in this 
example, the approach failed (see the discussion in Chapter 16). 

Feedforward Control 
The use of feedforward control to improve a measurement system is difficult to 
imagine. One idea is to use different gages depending on the class of part we are to 
measure. This would be effective in reducing measurement variation if each meas- 
urement system performed better for one of the classes of parts. For instance, sup- 
pose we wish to measure the thickness of foam. Say the current measurement 
system (hand calipers) worked well for narrow foam, but not very well for thick 
foam. Then, to implement feedforward, when foam of different grades required 
measurement we would choose the best gage for the job. 

Feedback Control 
We can use a feedback control scheme if a measurement system drifts. To set up the 
controller, we select a reference part and measure it repeatedly in the short term to 
determine the average and the standard deviation. Then to implement, we measure 
the same part on a periodic basis and adjust the measurement system if the charac- 
teristic value is materially different from the average. We use the short-term varia- 
tion to determine if the change is material. 

Robustness 
Maintenance on a measurement system can be thought of as the Robustness 
approach. We hope to reduce the measurement variation without knowledge of the 
dominant cause. Another idea to reduce measurement variation that uses the robust- 
ness idea is to take two or more measurements on each part and average the obtained 
results. This will reduce the measurement variation, at the expense of increased 
measurement costs, if the repeated measurements are independent. 

Inspection 
Inspection is not an option to improve a measurement process. We have no way to 
determine which measurements should be rejected. 

Move the Process Center 
Moving the process center is trivial for a measurement process. We just add some 
value to all measured values. The Move Process Center approach is appropriate to 
eliminate a known and persistent measurement bias. 
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CHAPTER 8—NO 

EXERCISES CHAPTER 9 

9.1 Think of a process and problem you know well. Define various families of 
causes. 

The solution depends on the process and problem chosen. 
 

9.2 The following plot shows the results of a process investigation aimed at finding 
a dominant cause. The dashed lines give the full extent of variation in the out- 
put as defined by the problem baseline. Can the input be ruled out as a domi- 
nant cause of variation? 

 
 

 
 

Input 
 
 

The simple answer is no, because we have not seen the full extent of variation. 
However, 

• If the full range of variation in the input is bigger than that observed, the input 
may be a dominant cause. 

• If the full range of variation in the input has been observed, the input is not a 
dominant cause on its own but may be dominant in combination with another 
input (one that has not varied over its full range of variation in the investigation). 

For instance, the input/output relationship may look like the plot that follows, 
where different plotting symbols are used to distinguish between two possible val- 
ues for another input. In the original investigation, the level of the other input was 
restricted to the values given by solid circles. 
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CHAPTER 
10 

Input 

 

10.1 The flow chart that follows shows the major steps in an assembly process to set 
the wheel alignment of a truck. 

 

CamFrame

Upper Control
Arm

Lower Control
Arm

Knuckle

Assembly

Aligner 1

Aligner 2

Aligner 3

Aligner 4

MeasurementComponents  
 
 

The characteristic of interest is right camber with specification 0.5 ± 0.5°. 
Camber is measured on every truck by one of the four gages (aligners). The 
process performance for right camber is shown as follows based on about 6200 
consecutive trucks. 
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a. Based on this histogram, can the measurement system be eliminated as a 
dominant cause of the camber variation? 

b. What data could you collect to demonstrate that a dominant cause does not 
act in the measurement system? 

c. How could you rule out the assembly operation as the home of a dominant 
cause? 

d. How could you eliminate differences in the suppliers of the upper control 
arm as the home of a dominant cause? 

e. The plot that follows shows the process behavior over three shifts. What fam- 
ily of causes can be eliminated based on these data? 
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f. The following plot shows the camber variation for the first nine trucks in the 

data set. What families can be ruled out as the home of a dominant cause 
using these data? 
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g. In a special study, one key characteristic of the lower control arm was meas- 

ured for 30 trucks. The other components were specially selected to ensure 
that they were well within specification. Based on the plot that follows, is the 
lower control arm characteristic a dominant cause of right camber variation? 
Explain. 
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a. No. The measurement variation contributes to the range of values in the his- 

togram but there is no way to tell from this investigation how much. 
b. We need to conduct an investigation of the measurement system where right cam- 

ber is measured more than once on a number of trucks. 
c. If we are able to disassemble and reassemble the alignment components repeat- 

edly without damage, we can assess the assembly operation. If disassembly/ 
reassembly does not change the right camber values much, we eliminate the 
assembly operation as the home of a dominant cause. Repeated disassembly and 
reassembly using the production assembly process is difficult in this application. 

d. If we were able to track which trucks contained the upper control arms from the dif- 
ferent suppliers, we could stratify the right camber values by control arm supplier. 
If the control arm supplier was a dominant cause, the average right camber values 
in the two groups would be quite different, relative to the full extent of variation. 

e. We are seeing roughly the full extent of variation in the output (right camber) 
within a short time frame. With this evidence we eliminate the family of causes 
that acts over the long term. 

f. We have not observed the full extent of variation in right camber. It is premature 
to draw conclusions about the home of the dominant cause. 

g. While the relationship between the lower control arm characteristic and right 
camber appears strong, we have not observed the full extent of variation in the 
right camber. We may ask if the range of lower control arm characteristic values 
observed in the investigation is typical of the process. 

 
10.2 Consider again the camshaft lobe runout problem introduced in Chapter 1. 

Each camshaft has 12 lobes with a number of characteristics of interest. In a 
search for a dominant cause, we may compare the lobe-to-lobe and camshaft-to- 
camshaft families of variation. Using the problem baseline data given in the file 
camshaft lobe runout baseline, explore the relative sizes of the two families for 
the following characteristics and decide which family, if any, can be eliminated. 

a. Profile A 
b. Profile B 
c. Profile C 
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We can graphically compare the lobe-to-lobe and camshaft-to-camshaft families of 
causes by stratifying the baseline data by lobes using box plots. The observations for 
each lobe show the effect of the camshaft-to-camshaft family, while comparing the 
box plots for different lobes shows the effect of the lobe-to-lobe family. 

 
a. For profile A, the camshaft-to-camshaft family is the home of a dominant cause. 

There is very little difference from lobe to lobe in either the average or variation 
of profile A. 
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b. For profile B, we conclude the dominant cause acts in the camshaft-to-camshaft 

family. There is, however, more variation (though still small) attributable to the 
lobe-to-lobe family than for profile A. 
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c. For profile C, the middle lobes exhibits less variation (and lower average) than 

for lobes on the end. The dominant cause is an interaction between lobe number 
and some, as yet, unidentified cause that acts in the lobe-to-lobe family. Note that 
ANOVA results corresponding to this plot will not reflect the differences in vari- 
ation by lobe. The ANOVA analysis focuses on differences between the profile C 
averages across lobes. 

P
ro

fil
e 

A
 

P
ro

fil
e 

B
 



Exercise Solutions CD–105 
 

 
 

400 
 
 
 

300 
 
 
 

200 
 
 
 

100 
 
 

0 

1    2    3    4 

 
 
 

5    6    7    8 

 
 
 

9   10  11  12 

Lobe 

 
10.3 In the manufacture of an injection molded part, a key crossbar dimension 

exhibited excess variation. The problem baseline estimated the standard devia- 
tion of the crossbar dimension as 0.46 with full extent of variation –0.3 to 2.0. 
The goal was to reduce the standard deviation to less than 0.25. An investiga- 
tion showed the measurement system to be highly capable. 

Next the team conducted a multivari investigation where five consecutive 
parts were sampled every 30 minutes for four hours. Analyze the data given in 
crossbar dimension multivari. Which family of variation can be eliminated as 
the home of the dominant cause? 

From the plot of crossbar dimension by time (given as follows) we see the time-to- 
time family contains the dominant cause of variation. The dominant cause is acting 
over the 30-minute time periods, but not over consecutive parts, that is, not in the 
part-to-part family. We can eliminate the part-to-part family. 
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10.4 As described in Chapter 7, in a process that placed labels on bottles, the team 
searched for an acceptable measurement system. The file label height measure- 
ment contains the data from an investigation in which three operators using a 
hand feeler gage measured three specially chosen bottles three times on two 
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different days. The bottles were chosen to roughly cover the range of label 
height values seen in the process. From a baseline investigation an estimate of 
the overall standard deviation was 0.022. The results of a one-way ANOVA are: 

Analysis of Variance for height 
Source DF SS MS  F  P 
part 2  0.0413263   0.0206631 263.10 0.000 
Error 51 0.0040054 0.0000785 
Total 53 0.0453317 

Individual 95% CIs For Mean 
Based on Pooled StDev 

Level N  Mean  StDev             ----+---------+---------+---------+-- 
1 18 0.06966 0.00965      (-*-) 
2 18 0.10950 0.00930 (-*) 
3 18 0.13705 0.00749 (-*) 

----+---------+---------+---------+-- 
Pooled StDev = 0.00886 0.075 0.100 0.125 0.150 

 
We have stdev(due to measurement) = 0.00886, and thus 

 

( ) ( )2 2due to process 0.0204 0.022 0.00886stdev = = −  
 

and an estimated measurement discrimination ratio of 2.3. The team 
decided to improve the measurement system before addressing the original 
label height variation problem. Reanalyze the measurement investigation 
results to eliminate families of possible dominant causes of measurement 
variation. 

 
We start our analysis by calculating the heights minus the part average since we 
want to look for sources of variation other than part. Plotting height minus part aver- 
age versus operator and day we get the plots given as follows: 
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We see a clear difference in average height between operators and no difference 
between days. Operator three consistently gives larger values than the other two oper- 
ators. This relative bias was found to be due to differences in procedure used by the 
three operators. With additional training the relative bias between operators was 
eliminated, and the measurement discrimination ratio was increased to around seven. 

 
10.5 A process improvement problem was initiated to reduce the number of updings 

on a roof panel. Updings are small outward dents in the metal surface caused by 
contamination. The team discovered that the dominant cause was contamina- 
tion before the forming process step. In an investigation, the team measured the 
particle count on coils directly after the arrival from steel supplier and again 
after blanking and stamping (before the forming process). They measured at 
the tail, middle, and head of four different coils. The data are given in the file 
roof panel updings variation transmission. What does the following scatter plot 
tell us about the dominant cause? The plotting symbols correspond to the four 
different coils. 
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Assuming the investigation has seen the full extent of variation in the output (which 
we are not given in the exercise description), we conclude the dominant cause acts 
in the raw blanks. The blanking, stamping, and forming process steps all transmit 
but do not add variation. 

 
10.6 In the engine block porosity example discussed in Chapter 10, the team found 

the occurrence of high porosity coincided with production directly after breaks. 
To explore this clue further, they conducted another investigation in which the 
porosity of 50 consecutive blocks was measured. The first six blocks were taken 
from directly before the lunch break, and the next 44 blocks were the first ones 
produced after the break. The data are given in the file engine block porosity 
run chart. What does the observed pattern in the run chart tell us about the 
dominant cause? 

E
nd

 p
ar

tic
le

 c
ou

nt
 



CD–108 Exercise Solutions 
 

 
 

400 
 
 

300 
 
 

200 
 
 

100 
 
 

0 
 

10 20 30 40 50 

Index 
 
 

All six blocks from before lunch have extremely low porosity. Immediately follow- 
ing the break, the first six blocks have the highest porosity. The porosity gradually 
trends downward. This pattern implies the dominant cause is some input that 
changes abruptly during the breaks and then gradually returns to the original level. 
The return time is greater than 44 blocks. The team concluded that pouring temper- 
ature was a suspect dominant cause. The temperature of the iron decreased during 
breaks because there was no external heat source in the pouring ladles. The pouring 
temperature gradually increased after a break since the pouring ladles are frequently 
replenished with hot iron. 

 
10.7 High silicon concentration in cast iron is undesirable as it was found be a dom- 

inant cause of fluidity variation. However, measuring the silicon level can be 
difficult. The measurement process consisted of sampling the molten iron by 
pouring sample coins for testing. The coins are then machined and polished 
before being spectrochemically analyzed. The full extent of variation in percent 
silicon as measured in the current process was 1 to 4%. The measurement sys- 
tem was investigated by repeatedly measuring three different coins that roughly 
covered full extent of variation in the observed percent silicon. Two operators 
measured each of the three coins three times on each of two days. The data are 
given in the file iron silicon concentration measurement. Analysis of the meas- 
urement results estimated the measurement standard deviation as 0.33. The 
corresponding estimate of the process standard deviation was 0.5; thus the dis- 
crimination is too small at around 1.5. The team needs to improve the measure- 
ment system. Using the existing measurement investigation data, are there any 
clues about the dominant cause of the measurement variation? 

We start our analysis by calculating the silicon concentration minus the average for 
each coin since we want to look for sources of measurement variation other than dif- 
ferences from coin to coin. Some plots of the data are given as follows. 
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We see a small difference between the two operators, but no dominant cause. The 
dominant cause is acting over the short term. Using other investigations, the team 
was unable to determine the dominant cause of measurement variation. In Chapter 
19, we describe a robustness investigation used to look for changes in this measure- 
ment process that would result in less variation. 

 
CHAPTER 11 

11.1 In a multivari investigation, two consecutive pieces are selected from each of 
three pallets once per hour. Sketch the appearance of the multivari chart that 
shows all three families at the same time if a dominant cause lies in the follow- 
ing family. Use the following multivari chart template in which the dashed lines 
indicate the full extent of variation. 

a. Pallet-to-pallet family 
b. Part-to-part family 
c. Hour-to-hour family 
d. An interaction between the part-to-part and pallet-to-pallet families 
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We give examples of the possible multivari charts, where the output name matches 
the question part. We suppose the full extent of variation is 8 to 35 units. 
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Note in the multivari chart for output D, the output has the most variation for 
pallet 3. 

 
11.2 In the engine block leakers example, introduced in Chapter 1, the baseline 

defect rate was 2–3%. The team conducted a multivari investigation where 
three consecutive blocks were taken at twelve different times throughout the 
day. The investigation continued for three production days giving a total of 108 
castings. Each block was tested for leaks. The data are given in the file engine 
block leaks multivari. What can you conclude? 
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The resulting multivari chart is: 
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There is only a single leaker in the 108 blocks. This was not surprising consider- 
ing the low baseline leak rate. This plot does not provide much information. In gen- 
eral, multivari investigations are not effective for binary output characteristics 
unless large sample sizes are used and the proportion defective is plotted. 

 
11.3 At an intermediate operation the team planned a multivari investigation in 

which three consecutive parts were taken from each of two machines operating 
in parallel once every hour for two days. Consider two different processes. In 
the first process, the order of the parts coming from upstream is preserved, 
while in the second process the order is jumbled. When interpreting the result- 
ing multivari chart (think specifically about the part-to-part family), what dif- 
ference does it make which process we are observing? 

In the first process, the part-to-part family includes inputs that act from part-to-part 
upstream and in the intermediate operation. In the second process, the part-to-part 
family includes inputs that act part to part in the intermediate operation and all other 
upstream causes. For example, causes that acted in the time-to-time family upstream 
appear to act in the part-to-part family because of the jumbling. 

 
11.4 In a multivari investigation, the diameter of a transmission shaft was measured 

at four positions (left and right side at two different orientations) for three con- 
secutively sampled shafts each hour. The data are available in the file 
transmission shaft diameter multivari. 
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a. What conclusion can you draw from the multivari charts that follow? 
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b. Using the data assess whether the dominant cause acts in the shaft-to-shaft 

family. 
 

a. From the two multivari charts, we see that a dominant cause acts in the hour-to- 
hour family. 

b. To assess the shaft-to-shaft family we define a new variate group to uniquely 
identify the 20 groups of three shafts that are consecutive. The multivari chart 
using group (=[hour – 1] ⋅ 4 + position) is: 
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The variation from shaft to shaft inside each group is small, so the shaft-to-shaft 
family does not contain a dominant cause. 

 
11.5 In the production of engine blocks, bore diameters are key characteristics. Bore 

diameter is measured at three heights and two orientations in each of the eight 
bores in each block. The team used Statistical Engineering to address a problem 
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of excess bore diameter variation. The baseline investigation found a standard 
deviation of 3.04 and the full extent of variation of –9 to 9 as measured from 
nominal in microns. There were no strong differences between the different 
bores, heights, or positions. Another investigation concluded that the measure- 
ment process was adequate. To isolate the processing step where the dominant 
cause acts, the team selected 30 engine blocks haphazardly from a day’s produc- 
tion. In the investigation the bore diameter (measured from nominal at that 
processing step) in the first bore at the top position and first orientation was 
measured at each of five processing steps in the machining part of the process. 
The data are given in the file block bore diameter variation transmission. Which 
processing step is home to the dominant cause? 

The plots showing incoming and outgoing diameters (from nominal) are given as 
follows. The output is labeled based on the operation after which it is measured. 
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Starting from the end of the process, we see that little variation is added between 
operation 250 and the final diameter measurement, and also little variation is added 
between operations 200 and 250. Based on the plot in the lower left hand side, the 
dominant source of variation acts between operations 140 and 200 (including possi- 
bly operation 200 itself). 
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11.6 In the paint film build example described in Chapter 3, a baseline investigation 

found the standard deviation was 0.315, with an average of 16.2 thousandths of 
an inch. The full extent of variation was 15.2 to 18.5. To search for a dominant 
cause, the team conducted a multivari investigation where they measured the 
film build at five positions on five cars in a row every hour for two shifts (16 
hours). This resulted in a total of 400 film build measurements. The data are 
given in the file paint film build multivari. Based on the plots that follow, what 
conclusions can you draw? We define group as (hour – 1) ⋅ 5 + position. 
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The histogram of the multivari data covers more than the full extent of variation, so 
we know the dominant cause has acted. From the multivari charts, we conclude that 
the dominant cause acts in the hour-to-hour family. We can use a one-way ANOVA 
to estimate the within-hour standard deviation as 0.47, much less than the baseline 
standard deviation 0.68. In other words, if we could make the average thickness the 
same at each hour, we could reduce the variation substantially. 

 
11.7 A team wanted to reduce the number of updings on a roof panel. Updings are 

small outward dents in the metal surface caused by contamination. A baseline 
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investigation found that the total number of updings in 20 consecutive panels 
ranged between 5 and 438. To search for a dominant cause the team conducted 
a multivari investigation where the number of updings was counted for 20 con- 
secutive roof panels from three sections of seven different pallets of steel sheets. 
Originally, the plan was to repeat this data collection over two separate days. 
However, the team found the full extent of variation from the baseline was 
observed on the first day so they stopped collecting data. The data are given in 
the file roof panel updings multivari. 

a. Analyze the data using multivari charts and draw conclusions. 
b. When the number of updings was counted they were classified into one of the 

nine locations as numbered in the schematic that follows. Analyze the multi- 
vari data using a concentration diagram based on the given schematic. 
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a. The multivari data covers the full extent of updings variation. The multivari charts 
suggest a dominant cause acts in the pallet-to-pallet family of causes. There is no 
section-to-section effect and no evidence of an interaction between the pallet and 
section families. 
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b. Plotting the number of updings by location using the concentration diagram does 
not show any clear patterns. We can eliminate the location-to-location family. 
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11.8 The baseline investigation for the sand core example discussed in Chapter 1 
involved taking five samples over a single day of five consecutive shots of four 
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cavities each. The data are given in sand core strength baseline. What conclu- 
sions can you draw? 

Multivari charts using one input at a time follow. Since we are analyzing the base- 
line data, the core strength values by definition cover the full extent of variation. 
We see no strong cavity, time, or shot effects. However, there is much greater vari- 
ation at time 4 than the other times. The core-to-core family is a large source of 
variation only at time 4. 
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Exploring the data further, we make multivari plots by time together with shot 
and cavity in turn. As there is no clear pattern, the shot and cavity families can be 
eliminated. 
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We need to look for a dominant cause consistent with the extra core-to-core vari- 
ation at time 4. 

 
 
CHAPTER 12 

12.1 Vehicle plant and warranty complaints for loose spark plug wires at the spark 
plug end prompted an improvement project. As a result of several investiga- 
tions, the family of causes related to push forces on the wires was the home of a 
dominant cause. A further investigation then compared eight loose and eight 
good connections. For each of the 16 connections, the team measured the termi- 
nal position of wires and terminal runout of the spark plug in millimeters. The 
data are given in the file spark plug connection comparison. What do the data 
tell us about the dominant cause? 

Plotting the terminal runout and wire position by connection quality, as given, sug- 
gests wire position is a dominant cause. Note that there is one value in each group 
where wire position does not explain the connection quality. It is possible there is 
also a secondary cause. Before proceeding the team should verify that wire position 
is a dominant cause. 
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12.2 A sunroof installation process suffered from a 90% rework rate due to a lack of 
flushness. Flushness is defined as the difference in height between the sunroof 
seal and the metal roof. It is measured using digital calipers at six points (three 
at the front and three at the back). A baseline investigation showed that flush- 
ness problems were most pronounced at the two front corners with full extent of 
variation –3.5 to 4 mm and standard deviation 1.25 millimeters. A goal of 
reducing the front corner flushness variation to 0.5 and a range of –2 to 1 mil- 
limeters was established. Based on engineering knowledge, the team felt that 
only two types of characteristics could lead to flushness variation, namely roof 
crown height and attachment pad height. When the roof is adapted to allow 
installation of a sunroof, six installation pads are added. Based on this knowl- 
edge, the team selected six vehicles with large positive flushness and six vehicles 
with large negative flushness on both front corners. The sunroof modules were 
removed and the six attachment pad heights and roof crown height were meas- 
ured at the front and back. The data are given in the file sunroof flushness 
input-output. What conclusions can you draw? 

To start the analysis, we fit a multiple regression for both left front flushness and 
right front flushness with all the eight inputs. The residual variation for the two 
regression models was 0.35 (left) and 0.32 (right). Since both the residual variations 
are less than the target of reducing flushness variation to 0.5, the results appear 
promising. Plotting the data shows that a dominant cause of the right front flushness 
variation is the right front pad height. Similarly, a dominant cause of the left front 
flushness variation is the left front pad height. 
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The regression results given for left front flushness show that by eliminating the 

dominant cause we could reduce the variation in flushness variation to 0.30 for the 
left side and 0.35 for the right side. 
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The regression equation is 
left front  flushness  =    –0.117  +  1.05  left front  pad  height 

 

Predictor Coef SE Coef T P 
Constant –0.11745 0.08689 –1.35 0.206 
left front 1.05208 0.04677 22.49 0.000 

 

S  =  0.2996 R-Sq = 98.1% R-Sq(adj) = 97.9% 

12.3 An example related to sand defects in manifolds was discussed in Chapter 12. 
Before the problem mentioned in Chapter 12, the team carefully monitored the 
process for a shift. Each of 970 manifolds was classified as either scrap (due to 
sand issues) or not scrap. In addition many inputs relating to each manifold, 
including some discrete inputs such as mold number and continuous inputs 
such as pour time were recorded. In some cases the linkages were difficult to 
establish, and the team did the best they could. The data are given in the file 
manifold sand scrap comparison. What conclusions can you draw? 

There are no clear differences in the distributions of any of the input values when we 
stratify by scrap or not scrap. The box plots that follow are typical. 
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The team concluded that linking input values to individual manifolds was too dif- 

ficult. Many of the inputs are only measured a few times each shift and there is great 
uncertainty about the time linkages between the condition of each manifold and the 
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measured input values. The team next conducted the investigation described in 
Chapter 12. 

 
 

CHAPTER 13 

13.1 In a verification experiment there were two suspects at two levels. The low and 
high levels for each suspect were chosen based on the extremes from historical 
variation. The results of the first three runs of the experiment are shown in the 
following table. 

 
Input A Input B Order Output 

Low Low 2 13 

Low High 3 16 

High Low 1 17 

High High 4 ? 

 
Given that the full extent of output variation is 12 to 30, what conclusions 

can you draw about the dominant cause? 

Suspects A and B alone are not dominant causes. However, without making the last 
run, we cannot tell if there is a dominant cause that involves both inputs. If the run 
with both A and B at the high level gives an output value near 30, the dominant cause 
involves both inputs. If the last run gives an output value near 17, then neither sus- 
pect is a dominant cause. 

 
13.2 In the engine block porosity example discussed in the text and exercises of 

Chapter 10, a dominant cause of porosity acted immediately following sched- 
uled breaks in production. Based on this evidence, the team identified two sus- 
pects: iron pouring temperature and the addition of ladle wash. During work 
stoppages, iron that remained in the six pouring ladles cooled off because there 
was no external heat source. At the start of the break, ladle wash was added to 
the ladles to protect the refractory (surface). The team could not easily manip- 
ulate the pouring temperature, but they could change the amount of ladle wash. 
They conducted a verification experiment in which they added the normal 
amount of wash to ladles 1, 3, and 5 and half the normal amount to the other 
three ladles over two lunch breaks. At each break, they measured the porosity 
of the first 30 blocks poured (five from each ladle). The data are given in the file 
engine block porosity verification. 

a. What have we learned about the identity of the dominant cause of porosity? 
b. Explain how the effects of ladle number and the presence or absence of ladle 

wash are confounded. Does this matter? 
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c. Is it a problem that in this verification experiment we have not observed the 

behavior of the process before lunch breaks? 
 

a. We use a box plot to stratify the porosity by the amount of ladle wash. We also 
plot porosity against block number for the two levels of ladle wash. 
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Ladle wash is not a dominant cause of porosity. Because the porosity decreased 

as the block number increased, the team concluded that pouring temperature was 
a dominant cause. They accepted the risk that some other unknown cause, con- 
founded with pouring temperature, was actually responsible for the change in 
porosity. 

b. In the experiment, the effects of ladle number and the presence or absence of 
ladle wash are confounded, since ladles 1, 3, and 5 always had full ladle wash and 
ladles 2, 4, and 6 always had half ladle wash. As shown in the following plot, the 
porosity scores were consistent across the odd- and even-numbered ladles. Based 
on engineering knowledge, the team believed there was no other cause that 
matched the change in the amount of ladle wash. Thus, in this case the confound- 
ing does not limit the conclusions in any meaningful way. 
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c. Observing the process before breaks was not necessary because the team was try- 

ing to determine if wash or temperature was the dominant cause of the porosity. 
These suspects changed at, or after, the break. 
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13.3 The manufacture of a tube assembly required a protective nylon sleeve to be 

positioned and bonded to a tube. The bond strength of this tube assembly was 
occasionally tested using a destructive test where the sleeve was subject to 
increased tensile shear load until failure. In the current process, the average 
pull-off force was around 15 pounds, but roughly 8% of assemblies tested had a 
pull-off force less than the desired minimum of five pounds. The team decided 
to try to solve the problem by reducing the variation in pull-off force rather than 
by increasing the average pull-off force. A number of investigations were con- 
ducted to find the dominant cause. A multivari investigation suggested that the 
dominant family of causes was tube-to-tube. At this point, the team decided to 
conduct an experiment to search for a dominant cause using the limited process 
information they had gathered. They planned a factorial experiment with three 
suspects—clearance between the sleeve and tube, amount of adhesive, and cure 
time—all consistent with the tube-to-tube family clue. The team chose the low 
and high levels of each suspect to roughly match their range in regular produc- 
tion. The levels of clearance were achieved by sorting sleeves and tubes. There 
were two replicates of each treatment, and the run order was randomized. The 
data are given in the file nylon bond strength verification and summarized in the 
following table: 

 
 

Treatment Order Clearance Adhesive Cure time Bond strength 

1 6, 7 Low Low Low 26, 28 

2 14, 8 High Low Low 10, 10 

3 2, 3 Low High Low 25, 26 

4 12, 5 High High Low 7, 9 

5 16, 4 Low Low High 24, 27 

6 13, 10 High Low High 12, 13 

7 15, 11 Low High High 23, 21 

8 1, 9 High High High 7, 7 

 

What do the results tell us about the dominant cause? 

Plotting bond strength by treatment and creating a Pareto plot of the effects based on 
a full model gives the following plots. 
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We see that input A (clearance) has by far the largest effect. A plot of bond 

strength by clearance (input A), given as follows, clearly shows that clearance is a 
dominant cause of bond strength variation, and that low clearance gives higher aver- 
age bond strength. 
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13.4 Steering knuckles are produced in a gray iron casting process. Around 2% of 

castings were scrapped because the percent nodularity was too small. In this 
example the team did not clearly establish a problem baseline. The team 
thought the cause must be related to the inoculation of the molten iron using a 
silicon-based alloy. The inoculant was added as the iron was poured to increase 
nodularity (and thus casting strength). Based on observing the process, the 
team noticed that the amount of inoculant added by the automated delivery 
system seemed to vary. The desired amount of inoculant was obtained by slowly 
shaking the inoculant onto a plate. The plate was designed to tip automatically 
when the required weight of inoculant was present. The team saw that the loca- 
tion on the plate where the inoculant fell varied, and they thought that this 
might influence when the plate tipped and thus how much inoculant was deliv- 
ered. The team decided to verify inoculant amount as the dominant cause of 
nodularity variation. In the verification experiment, they produced a total of 20 
castings at each of two levels of inoculant amount, 12.3 and 13.5 grams. For the 
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experiment the inoculant was carefully weighed and added by hand. The exper- 
iment consisted of eight runs of five castings each. The order of the eight runs 
(four at each level) was randomized. For each of the 40 castings the percent 
nodularity was determined. The data are given in the file steering knuckle 
strength verification and are summarized in the table that follows: 

 
 

Run Inoculant amount Order Percent nodularity 

1 12.3 2 81.8, 79.4, 80.3, 80.6, 79.3 

2 12.3 3 79.8, 77.0, 77.8, 79.3, 78.7 

3 12.3 8 80.9, 82.0, 80.6, 80.6, 81.1 

4 12.3 4 81.0, 79.4, 77.0, 80.6, 80.2 

5 13.5 5 82.5, 86.1, 82.3, 83.5, 85.2 

6 13.5 7 82.1, 84.6, 83.9, 85.0, 85.6 

7 13.5 6 85.0, 87.8, 83.1, 84.0, 84.4 

8 13.5 1 85.0, 84.3, 86.3, 83.8, 82.9 

 

a. What considerations should the team have used in choosing the two levels 
for inoculant? 

b. Why was randomizing the order of the runs important? 
c. Has the team verified the dominant cause of nodularity variation? 

 
a. The team chose the levels to cover the range of inoculant values seen in regular 

production. Over a single shift, the team determined the range 12.3 and 13.5 
grams by weighing the amount of inoculant obtained using the automatic deliv- 
ery system on a separate scale. 

b. The team chose an experiment with four replicates of each level of the suspect and 
five repeats for each run. Here, since the team had no information about the time 
family that contains the dominant cause, the randomization is extremely impor- 
tant. There is a danger that some unknown input may change in the same way as 
the suspect. Four replicates may not be sufficient. The repeats do not help. 

c. Plotting the percent nodularity by amount of inoculant gives: 
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Because there was no baseline, we cannot tell if we have seen the full extent of 
nodularity variation in the experiment. However, since all of the castings with per- 
cent nodularity less than 80 would be scrapped, the team concluded that the 
amount of inoculant was the dominant cause. An obvious fix was to replace the 
plate with a cone. With the plate, not all the inoculant collected at the center. Using 
a cone, all the inoculant collects at the bottom, and the cone does not tip too early. 

 
CHAPTER 14 

14.1 In the camshaft lobe runout example, the team searched for a dominant cause 
of variation. As discussed in Chapter 10, they conducted a variation transmis- 
sion investigation where runout was measured directly before heat treatment 
and after the final step of the process, on the same 32 parts selected over the 
course of one day. In the investigation the grinder (one of eight) and heat treat- 
ment spindles (one of four) used were also recorded. The data are given in the 
file camshaft lobe runout variation transmission. They found that a dominant 
cause of variation was the BC runout just after heat treatment and, more specif- 
ically, as shown in the plot that follows, that heat treatment spindle was a dom- 
inant cause. 
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In this example, the team decided not to reformulate the problem but to look 
for a more specific cause. 

a. Discuss the advantages and disadvantages of the decision not to reformulate. 
b. Suppose the team had reformulated the problem based on heat treatment 

spindle and that the original goal was to reduce the final runout standard 
deviation to less than 4.5. Using the results from a one-way ANOVA model 
based on heat treatment spindles, derive a goal for the new problem based on 
differences among spindle averages. 

 
a. The advantages of not reformulating the problem are mainly that a new baseline 

for the runout after heat treatment (that is, the dominant cause, or the output in 
the new problem) does not need to be established, and we need not determine a 
goal for the new problem. The main disadvantage of not reformulating is that we 
still need to measure the final runout in future investigations. Had we reformu- 
lated, we would use the runout after heat treatment. In this case, it was not 
cheaper or easier to measure runout after heat treatment. 

b. We use a one-way ANOVA model to assess the possible reduction in runout if we 
could align all the heat treatment spindles perfectly. The appropriate ANOVA 
results are: 

Analysis of Variance for final BC 
 

Source 
heat treatment 

DF 
3 

SS 
894.7 

MS 
298.2 

F 
17.53 

P 
0.000 

Error 28 476.3 17.0   
Total 31 1371.0    

Individual 95% CIs For Mean 
 
Level 

 
N 

 
Mean 

 
StDev 

Based on Pooled StDev 
----------+---------+---------+------ 

1 8 15.538 2.819 (----*----) 
2 8 16.688 5.491 (----*----) 
3 8 28.900 2.751 (----*----) 
4 8 18.675 4.729 (----*----) 

----------+---------+---------+------ 
Pooled StDev = 4.124 18.0 24.0 30.0 

By perfectly aligning the heat treatment averages, we predict the standard devia- 
tion could be reduced to 4.1. Hence, to meet the goal we need to ensure that the heat 
treatment averages are close to equal. 

 
14.2 In Chapter 11, the team found that the piston diameter directly after operation 

270 was a dominant cause of final V6 piston diameter variation. The relation- 
ship is illustrated in the scatter plot that follows. The data are given in the file 
V6 piston diameter variation transmission. 
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The team decided to look further for a more specific dominant cause. Sup- 
pose, however, they had wanted to reformulate the problem in terms of the oper- 
ation 270 diameter. Determine an appropriate goal for the reformulated 
problem. Recall that the goal for the original problem was to reduce the final 
diameter standard deviation to less than 2.0. 

 
Fitting a linear model to the variation transmission investigation results gives: 

The regression equation is 
diameter  after  OP310  =  64.3  +  0.884  diameter  after  OP270 

 

Predictor Coef SE Coef T P 
Constant 64.27 22.29 2.88 0.005 
diameter 0.88358 0.03739 23.63 0.000 

 

S  =  1.224 R-Sq = 85.6% R-Sq(adj) = 85.4% 

Using the regression results, we estimate that 
 

stdev(final diameter)  
 

Thus, to meet the goal of reducing the final diameter variation to less than 2.0, we 
solve to get stdev(OP270 diameter) < 1.58. Thus, a reasonable goal for the reformu- 
lated problem is to reduce the diameter variation at operation 270 to less than 1.6. 
Note that in the variation transmission investigation, the diameter variation at OP270 
was 3.4, so the goal requires more than a 50% reduction in diameter variation. 

 
CHAPTER 15 

15.1 Based on customer complaints about assembly difficulty, a team investigated 
fascia dimension variation. A baseline investigation found that some fascias 
were too large. The team felt that reducing the average size of the fascias could 

0.8842 stdev(OP270 diameter)2  1.2242
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solve the problem (that is, they adopted the Move the Center approach). They 
planned a (full) factorial experiment with two candidates, cycle time and cure 
time, each at two levels to look for an adjuster. They chose the levels for each 
candidate based on engineering judgment. The results of the experiment are 
given in the file fascia dimension move center and in the following table. For 
each treatment, the team conducted four runs producing 10 fascias for each 
run. The order of the 16 runs was randomized over a day. In the data, we give 
only the average fascia dimension from each run and not the individual values. 

 
 

 

Treatment 

 

Run order 
Cycle time 
(minutes) 

Cure time 
(hours) 

Average fascia size 
(from nominal) 

1 8, 10, 1, 14 85 5 4.50, 5.23, 5.75, 6.51 

2 6, 15, 12, 2 113 5 7.12, 8.25, 9.06, 9.28 

3 11, 3 , 9, 16 85 19 3.65, 3.75, 4.27, 5.34 

4 13, 5, 4, 7 113 19 4.24, 6.31, 7.15, 8.22 

 

a. Can cycle time or cure time be used as an adjuster? 
b. Suppose the goal was to reduce the average fascia size to 3.0. What do you 

recommend? 
c. What is the advantage of looking at the dimensions for all the fascias within 

a run, rather than the averages? 
 

a. We first plot dimension by treatment. We see that there are differences between 
the average dimensions for different treatments. In particular, treatment 3, with 
low cycle time and high cure time, leads to smaller average dimensions. 
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Next, we fit a full model and look at the Pareto plot of the effects. 
 

A: Cycle time 
B: Cure time 

A 
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AB 
 
 

0 1 2 3 4 

 
Both cycle time and cure time have large effects; hence, both are potential 

adjusters. The interaction between these two candidates is small. From the fol- 
lowing main effect plots, we see that lowering cycle time and increasing cure 
time will reduce the average dimension. 
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b. None of the treatments used in the experiment gave an average dimension as 

small as 3. Shorter cycle time and longer cure result in smaller dimensions. The 
team should consider another investigation to calibrate the effects of changing 
both adjusters. 

c. With the individual dimensions for all 160 fascias, we could look at the variation 
within each run. This would allow us to determine whether changing the candi- 
date settings changed the short-term fascia-to-fascia variation. 

 
15.2 An experiment was carried out to investigate four candidates to search for an 

adjuster of the formability safety margin of galvanized sheet metal trunk lids. 
The purpose was to increase the average safety margin from the baseline value 
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of 10.7. In the experiment, each candidate was tested at two levels, selected to 
be near the edge of what was physically possible—see the table that follows. 
Note that none of the treatments corresponded to the existing process settings. 

 
 
 

 

Treatment 
Run 

order 

 

Tonnage 

 

Lubrication 

 

Blank size 

 

Prebending 
Safety 
margin 

1 6 310 Unlubricated 949    1494_m  m No 8 

2 16 375 Unlubricated 949    1494_mm No 11 

3 3 310 Lubricated 949    1494_mm No 12 

4 11 375 Lubricated 949    1494_mm No 0 

5 7 310 Unlubricated 965    1500_mm No 13 

6 15 375 Unlubricated 965    1500_mm No 6 

7 4 310 Lubricated 965    1500_mm No 11 

8 13 375 Lubricated 965    1500_mm No 1 

9 1 310 Unlubricated 949    1494_mm Yes 18 

10 12 375 Unlubricated 949    1494_mm Yes 17 

11 5 310 Lubricated 949    1494_mm Yes 18 

12 14 375 Lubricated 949    1494_mm Yes 10 

13 2 310 Unlubricated 965    1500_mm Yes 8 

14 10 375 Unlubricated 965    1500_mm Yes 12 

15 8 310 Lubricated 965    1500_mm Yes 16 

16 9 375 Lubricated 965    1500_mm Yes 8 

 
 

Press tonnage was very difficult to change so all eight runs with low press 
tonnage were carried out first. Within each group of eight runs, the order was 
randomized. The data are given in the file sheet metal move center. 

a. Analyze the experimental data to see if any of the candidates is an adjuster. 
b. Does the restriction on randomization required for this experiment make any 

difference to the conclusions we can draw? 
 

a. We start the analysis by looking at a plot of the safety margin by treatment. In this 
case, since there is only a single output for each treatment, it is difficult to draw 
conclusions from the plot. We do see that there are treatments with very different 
values for the safety margin. 
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Next, we fit a full model and examine a Pareto plot of the effects. 
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D has a large main effect and AB a large interaction effect. We follow up with 
plots of safety margin by prebending (input D) and an interaction plot of tonnage 
by lubrication. 
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We see that prebending leads to higher safety margin on average and that the 
safety margin is much more sensitive to the presence or absence of lubrication at 
the high level of tonnage than at the low level. The average safety margin for the 
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two runs with prebending, low press tonnage, and lubrication was (18 + 16)/2 = 17, 
considerably higher than the baseline average 10.7. This finding needs to be con- 
firmed. See the discussion in part b. 

b. Without the randomization it is more likely that the effect attributed to press ton- 
nage is due to some other (unknown) input. This could occur if the level of the 
unknown cause happened to change at (or near) the moment in time when press 
tonnage was changed. When interpreting the experimental results we cannot tell 
if this occurred, or not. 

 
15.3 In the sand core strength example introduced in Chapter 1, too many cores 

were breaking during handling. A suggested solution was to increase the core 
strength (and thereby reduce core breakage) by increasing the resin concentra- 
tion. It was known that increasing the resin would result in a stronger core. 
However, the precise nature of the relationship—that is, how much the core 
strength increases for a given change in resin concentration—was not known. 
An experimental investigation was planned to quantify the relationship. Three 
levels of resin concentration (1.3, 1.6, 1.9% by weight) were chosen based on 
engineering judgment. In the experiment, 40 cores for each level of resin were 
produced; 15 were measured for strength (using a destructive test) and the 
remaining 25 were processed to look for casting problems. The experiment con- 
sisted of three runs with 15 repeats. The order of the runs was not randomized. 
The data are given in the file sand core strength move center. 

a. What can you conclude about the relationship between resin concentration 
and core strength? 

b. The team used only three runs with 15 repeats for each run. Discuss the 
advantages and disadvantages of this plan compared with using five repli- 
cates for each treatment with three repeats each. 

 
a. We plot strength by resin level as follows: 

 
 

15 
 
 
 
 
 

10 
 
 
 
 
 

5 
 
 

1.3 1.6 1.9 

Resin level 
 

Because the increase in average strength is roughly linear as a function of the 
resin concentration, to quantify the relationship, we fit a regression model: 
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The regression equation is 
core  strength  =    –3.76  +  8.61  resin  level 

 

Predictor Coef SE Coef T P 
Constant –3.762 1.609 –2.34 0.024 
resin 8.6111 0.9943 8.66 0.000 

 

S  =  1.634 R-Sq = 63.6% R-Sq(adj) = 62.7% 

We expect, on average, a 0.86 unit increase in core strength for each 0.1 
increase in the percent resin. The team had quantified the effect of resin concen- 
tration. At the 2% level of resin, one of the 25 cores led to a defective casting, so 
the team knew they should not raise the resin concentration to this level. As a 
result, although the team had now quantified how to move the process center, the 
approach was abandoned because of the fear of increased scrap due to core- 
related defects. 

b. Using five replicates for each treatment would allow randomization of the order. 
This would help protect against some unknown input changing in the same way 
as resin in the experiment. A disadvantage is that it may be more difficult and 
expensive to change the resin level more often. 

 
 

CHAPTER 16 

16.1 In a sonic welding operation, problems arose due to poor weld strength, meas- 
ured as pull-off force. The goal was to reduce the variation and increase the 
average pull-off force. The second goal is not addressed here. From the baseline, 
the full extent of variation for pull-off force was 0.9 to 3.0. The team discovered 
that the dominant cause acted in the time-to-time family. While they could not 
be more specific, the team felt that the dominant cause was related to material 
hardness, which was outside their control. They decided to try to desensitize the 
process to variation in the dominant cause. 

The team planned a fractional factorial experiment with four candidates at 
two levels each in eight treatments. Using the results of regular process moni- 
toring, they identified three time periods when weld strength was low, medium, 
and high relative to the baseline. In each period, they randomized the order and 
then produced a part with each of the eight treatments. The pull-off force data 
and plan are given in the file sonic weld desensitization and the table that fol- 
lows. The three values in the columns Order and Pull-off force correspond to 
the three different time periods. The original settings of the candidates corre- 
spond to treatment 2. 
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Time 
1 
2 
3 

 
 

Treatment Order A B C D Pull-off force 

1 7, 2, 6 –1 –1 –1 –1 1.8, 2.1, 2.3 

2 4, 6, 1 –1 –1 1 1 0.9, 2.0, 2.7 

3 6, 3, 4 –1 1 –1 1 2.0, 2.4, 2.1 

4 8, 1, 2 –1 1 1 –1 0.6, 1.5, 3.0 

5 3, 7, 8 1 –1 –1 1 2.8, 2.9, 3.0 

6 2, 4, 3 1 –1 1 –1 2.1, 3.0, 3.7 

7 1, 8, 7 1 1 –1 –1 2.9, 3.2, 3.1 

8 5, 5, 5 1 1 1 1 2.3, 2.5, 4.0 
 

a. Explain why the team believed the dominant cause acted over the three runs 
for each treatment. 

b. What levels of the candidates do you recommend to reduce the variation in 
pull-off force? 

c. Another way to assess the results of this experiment is to summarize the out- 
put across each treatment using log standard deviation. Using this perform- 
ance measure, do your conclusions differ from part b? 

 
a. The team knew that the dominant cause acted time to time. Since they selected 

periods with low, medium, and high weld strength under the current conditions, 
they were confident that the dominant cause acted over the three periods. In the 
experiment, this assumption was verified since the range of pull-off force values 
for treatment 2, the current process settings, covered the full extent of variation. 

b. To start the analysis we look at a plot of the pull-off force by treatment. 
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There are several promising treatments with little variation in pull-off force. 
To desensitize the process we are looking for a special kind of interaction 
between time (a surrogate for the dominant cause) and the candidates. The inter- 
action plots for time versus the candidates (using the average pull-off force as the 
response) are 

 
 

3.5 A B 
1 3.0 1 
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3.4 
C D 
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We see that changing the level of candidate C flattens the relationship between 

the pull-off force and time. More specifically, with the low level of candidate C, 
the time-to-time variation in pull-off force is much reduced. Changing the other 
candidates does not help. We recommend changing to the low level of candidate 
C, and leaving the remaining candidates at their current levels. 

c. Fitting a full model in the four candidates and analyzing the results using the per- 
formance measure log(s) gives the Pareto effects plot that follows. The plot indi- 
cates that candidate C has the largest effect. 

M
ea

n 
M

ea
n 

M
ea

n 



Exercise Solutions CD–137 
 

 
 

A: A 
C B: B 

C: C 
A D: D 

AC 

D 

B 

AB 

AD 

0.0   0.1    0.2    0.3     0.4    0.5    0.6    0.7 

 
From the main effect plot that follows, we see that the low level of C reduces 

the variation in pull-off force. This is the same conclusion as in part b. In most 
cases the conclusions obtained with the two analysis methods will be the same. 
We prefer the analysis that looks directly at the candidate by cause interaction 
plots rather than the analysis based on log(s). 
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16.2 In the crossbar dimension example discussed in Chapter 12, the team found 
that the dominant cause of dimension variation was barrel temperature. 
Because it was hard to control in regular operation, the team decided to try to 
make the process less sensitive to barrel temperature variation. In the current 
process, barrel temperatures ranged over roughly 4°C. The team planned a half 
fraction factorial experiment with three candidates—target barrel temperature, 
injection pressure, and material—at two levels each, as shown in the following 
table. The current injection pressure and target barrel temperature were 1000 
and 75, respectively. Note that although the variation in barrel temperature was 
the dominant cause, the target barrel temperature is a fixed input. Five cross- 
bars were produced and measured in each run. For each treatment, there were 
two runs, one at the target barrel temperature plus 2°C and the other at the tar- 
get barrel temperature minus 2°C. The data are given in the file crossbar dimen- 
sion desensitization and in the table as follows. 
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Treatment 

 

Target 
barrel 

temperature 

 
 

Injection 
pressure 

 
 
 

Material 

Dimensions 
at barrel 

temperature 
–2°C 

Dimensions 
at barrel 

temperature 
+2°C 

1 75 1000 Old 0, –0.1, 0.1, 0.5, 1.1, 0.8, 
–0.1, –0.2 0.9, 0.7 

2 75 1200 New 1.1, 0.6, 1.0, 1.5, 1.8, 1.5, 
1.4, 1.1 1.4, 1.3 

3 79 1000 New 1.1, 1.0, 1.3, 1.0, 1.1, 0.8, 
0.9, 0.8 0.9, 1.0 

4 79 1200 Old 1.2, 1.8, 1.8, 2.3, 2.1, 2.4, 
1.7, 1.9 2.1, 1.9 

 
Since the average dimension can be easily adjusted, we focus the analysis on 

finding a way to make the process less sensitive to barrel temperature variation. 

a. What levels of the candidates do you recommend? 
b. Injection pressure and material were chosen as candidates based on engineer- 

ing judgment. Looking again at the results presented in Chapter 12, what 
motivates the choice of target barrel temperature as a possible candidate? 

 
a. We begin the analysis by plotting dimension by treatment with a different plot- 

ting symbol for each of the two levels of the dominant cause. Treatment 3 looks 
most promising. Changing to the higher target barrel temperature, using the new 
material, and keeping the injection pressure the same is expected to make the 
process less sensitive to variation in the barrel temperature. 
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We examine the nature of the interaction between the candidates and the 

dominant cause with the following plots (where the response is the average 
dimension): 
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If we increase the target barrel temperature and, to a lesser degree, use the new 

material, we see that the relationship between crossbar dimension and barrel tem- 
perature is flatter. In other words, dimension is less sensitive to barrel tempera- 
ture variation at the higher target barrel temperature. Changing the injection 
pressure has no effect. The benefits of changing both the target barrel tempera- 
ture and the material were later validated with another investigation. Note that the 
observed variation in treatment 3 has likely overestimated the variation when 
actually running the process at these settings, since we have forced barrel temper- 
ature to near its expected extremes with the new target temperature. 

b. The nonlinear relationship between barrel temperature and dimension is shown 
in the left panel of Figure 12.3. In the plot, it appears there is less dimension vari- 
ation for high than for low barrel temperatures. 

 
16.3 In Chapter 16, we describe a desensitization experiment for the refrigerator frost 

buildup example where each refrigerator is subjected to only two extreme levels of 
environmental causes. Here we consider a hypothetical experiment in which each 
refrigerator is exposed to a number of environmental conditions to ensure that any 
chosen new design works well under any conditions, not just extreme conditions. 

The experimental design for the four candidates—D1, D2, D3, and D4—is 
the same as in Chapter 16. Here we plan to test each of the eight refrigerators 
(treatments) under all eight possible combinations of the usage or environmen- 
tal inputs as given in the following table: 
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Varying input 
Cause combination 

1 2 3 4 5 6 7 8 

Ambient 
temperature (°C) 

26 26 26 26 32 32 32 32 

Relative 
humidity (%) 

70 70 90 90 70 70 90 90 

Door openings 
per hour 

4 8 4 8 4 8 4 8 

 

The experimental plan had 64 runs. To conduct the experiment, all eight 
refrigerators were simultaneously placed in a test chamber and exposed to each 
cause combination in the given order. The cooling plate temperatures are given 
in the file refrigerator frost buildup desensitization2 and in the following table: 

 
 Candidates Cooling plate temperatures (in cause combination) 
Treatment D1 D2 D3 D4 1 2 3 4 5 6 7 8 

1 N O O N 3.6 3.9 4.6 1.0 4.4 0.1 4.4 0.7 
2 N O N O 5.1 4.7 4.3 2.9 4.2 4.1 7.1 5.1 

3 N N O O 4.6 4.6 4.3 4.9 2.4 5.0 5.5 16.0 
4 N N N N 3.8 12.8 6.9 6.9 7.1 6.7 3.0 15.7 

5 O O O O 2.9 0.2 –0.2 –0.2 –0.2 –0.2 –0.2 16.0 

6 O O N N 0.1 1.9 0.8 1.3 5.9 5.1 0.0 14.7 
7 O N O N 0.7 0.8 0.1 0.1 0.4 0.2 0.1 –0.1 

8 O N N O 0.2 3.4 0.3 1.0 4.0 0.2 5.2 16.0 
 

In the table, we have coded the new and original settings for the candidates as 
N and O, respectively. What conclusions can you draw? Remember, the goal is to 
desensitize cooling plate temperature to changes in the environmental conditions. 

We start the analysis by plotting the cooling plate temperatures for all of the eight 
environmental conditions (cause combinations) by treatment. 
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Treatment 7 gives consistently low cooling plate temperatures over all combina- 
tions of the environmental inputs. Treatment 7 corresponds to using the new levels 
for D2 and D4 and leaving D1 and D3 at their original settings. To examine how 
changing each candidate flattens the relationship between the changing environ- 
mental conditions and cooling plate temperature, we examine the appropriate inter- 
action plots. To create an interaction plot of the environmental conditions versus D1 
and D3, for example, we create a new column D1D3 with the four levels for the pair 
D1 and D3. 

 
D1 12 

New 
10 Original 
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Not all possible interaction plots are given. The other plots give similar conclu- 
sions. From the interaction plots, we see that changing a single candidate or a pair 
of candidates does not reduce the variation in average cooling plate temperature. In 
particular, all combinations of the candidates have a relatively large cooling plate 
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temperature for cause combination 8 (high temperature, humidity, and number of 
door openings per hour). The good properties of treatment 7 are due to a high-order 
interaction between the candidates that we cannot explore due to the confounding in 
the design. 

 
16.4 There were excessive failures in the accelerated life testing of electric motors. 

Using a group comparison investigation, the team found that unevenness in the 
commutator shaft surface was a dominant cause of these failures. The team next 
reformulated the problem to one of reducing the unevenness in the commutator 
shaft. The surface unevenness is measured on a scale of 1 (smooth) to 10 (rough). 
With further investigation, the team determined that the dominant cause of the 
variation in the (final) smoothness was the shaft profile before machining. The 
team adopted the Desensitization approach. They decided to conduct a frac- 
tional factorial experiment with eight treatments using four candidates. For 
each of the eight treatments there were two runs, one that used a shaft with a 
premachined smooth profile, and a second that used a rough profile. The exper- 
imental plan and data are given in the file electric motor failure desensitization 
and the table that follows. The order of the runs was randomized. 

 
 Smoothness 
 

Treatment 

 

Depth 
Grind 
time 

Rotational 
speed 

Feed 
rate 

 

Order 
Smooth 
profile 

Rough 
profile 

1 Shallow Short 1800 Slow 4, 5 2 7 

2 Deep Short 1800 Fast 6, 11 3 8 

3 Shallow Long 1800 Fast 1, 14 1 9 

4 Deep Long 1800 Slow 16, 12 2 8 

5 Shallow Short 2400 Fast 13, 9 3 2 

6 Deep Short 2400 Slow 10, 8 1 4 

7 Shallow Long 2400 Slow 3, 7 2 3 

8 Deep Long 2400 Fast 15, 2 3 5 

 
a. What is the confounding structure of the design? What limitations does this 

introduce? 
b. What conclusions can you draw? 
c. What would be the advantages and disadvantages of measuring the time to 

failure using the accelerated life test for each run rather than judging the 
smoothness of the commutator surface after machining? 

 
a. The confounding structure including two- and three-input interactions in candi- 

dates and the dominant cause (profile) is given by MINITAB as 
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Alias Structure (up to order 3) 

 
I 
Depth + Grind*Rotation*Feed 
Grind + Depth*Rotation*Feed 
Rotation + Depth*Grind*Feed 
Feed + Depth*Grind*Rotation 
Profile 
Depth*Grind + Rotation*Feed 
Depth*Rotation + Grind*Feed 
Depth*Feed + Grind*Rotation 
Depth*Profile 
Grind*Profile 
Rotation*Profile 
Feed*Profile 
Depth*Grind*Profile + Rotation*Feed*Profile 
Depth*Rotation*Profile + Grind*Feed*Profile 
Depth*Feed*Profile    +    Grind*Rotation*Profile 

The design is resolution IV in the candidates; hence, in the crossed design we 
can separately estimate the interactions between each candidate and the prema- 
chined profile (the dominant cause). For example, in the alias structure we see the 
interaction depth by profile is in a row by itself. 

b. We start the analysis by plotting smoothness by treatment with a different plot- 
ting symbol for each profile. Treatments 5 to 8, all with high rotational speed, 
look promising. 
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The interaction plots for profile versus each of the four candidates follow. 
Only rotational speed flattens the relationship between smoothness and the initial 
shaft profile. 
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We conclude that setting the rotational speed to 2400 will desensitize smooth- 
ness to changes in the initial shaft profile. 

c. With the existing experiment there is a risk that the treatment that results in a 
smoother commutator surface may not translate into better performance in the 
accelerated test. However, the chance of this occurring is small, since the team 
verified that the commutator surface unevenness was a dominant cause of electric 
motor failures. Using the accelerated test for the experiment would have been 
more expensive. 

 
 

CHAPTER 17 

17.1 In an investigation, 100 trucks were selected from regular production over two 
weeks. The frame geometry as given by four summaries (left and right front, left 
and right rear) and the alignment outputs left and right camber and caster were 
determined for all 100 trucks. The data are given in the file truck pull feedforward. 
In Chapter 17 an analysis determined that feedforward control based on frame 
geometry was feasible for left caster. Repeat the analysis for the other outputs: 
right caster, left camber, and right camber. 

M
ea

n 
M

ea
n 

M
ea

n 
M

ea
n 



Exercise Solutions CD–145 
 

 
A numerical summary of the three outputs is 

 

Variable N Mean Median TrMean StDev SE Mean 
right caster 100 4.0106 3.9645 4.0213 0.8298 0.0830 
left camber 100 0.3922 0.4130 0.3970 0.5077 0.0508 
right camber 100 0.4811 0.4160 0.4836 0.4146 0.0415 

 

Variable Minimum Maximum Q1 Q3 
right caster 1.7820 5.8710 3.5450 4.5588 
left camber -0.8490 1.4890 0.0078 0.7065 
right camber -0.5860 1.3650 0.2232 0.7630 

The results from fitting a linear regression model for each of the three outputs with 
all four possible inputs are: 

 

The regression equation is 
right caster =   –19.0 + 0.557 left front + 1.07 right front + 0.218 left rear + 

0.399  right  rear 
 

Predictor Coef SE Coef T P 
Constant –19.0241 0.6798 –27.99 0.000 
left front 0.55657 0.04478 12.43 0.000 
right front 1.06849 0.03994 26.75 0.000 
left rear 0.21845 0.03079 7.09 0.000 
right rear 0.39874 0.04638 8.60 0.000 

 

S  =  0.1962 R-Sq = 94.6% R-Sq(adj) = 94.4% 
 

The regression equation is 
left camber  =    –12.3  +  0.609  left front  +  0.360  right  front  +  0.172  left rear  + 

0.113  right  rear 
 

Predictor Coef SE Coef T P 
Constant –12.3225 0.4321 –28.52 0.000 
left front 0.60906 0.02846 21.40 0.000 
right front 0.36025 0.02539 14.19 0.000 
left rear 0.17192 0.01957 8.78 0.000 
right rear 0.11300 0.02948 3.83 0.000 

 

S  =  0.1247 R-Sq = 94.2% R-Sq(adj) = 94.0% 
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The regression equation is 
right  camber  =    –10.2  +  0.344  left front  +  0.556  right  front  +  0.0136  left rear 

+ 0.121 right rear 
 

Predictor Coef SE Coef T P 
Constant –10.2119 0.3540 –28.84 0.000 
left front 0.34438 0.02332 14.77 0.000 
right front 0.55571 0.02080 26.71 0.000 
left rear 0.01364 0.01604 0.85 0.397 
right rear 0.12114 0.02416 5.01 0.000 

 

S  =  0.1022 R-Sq = 94.2% R-Sq(adj) = 93.9% 
 

In each case, the residual variation (given by s in the regression results) is much 
smaller than the variation for the given output in the 100 trucks. We assume this 
closely matches the baseline variation since the data for the feedforward investiga- 
tion were collected over a relatively long time. Feedforward control using the frame 
geometry has the potential to greatly reduce pull variation. As described in Chapter 17, 
the team was able to use a model to predict camber and caster based on the truck frame 
geometry inputs and compensate for the effect if necessary. 

 
17.2 Engine assembly problems occurred due to a poor fit between the pistons and 

the engine bore. The dominant cause of poor fit was found to be variation in the 
clearance, the difference between the (minimum) bore diameter and the (maxi- 
mum) piston diameter. To solve this problem, the team thought about using the 
feedforward (selective fitting) approach. The idea was to measure each piston 
diameter and place them into bins of similar diameter. Then, after each bore 
diameter was measured, a piston would be selected from the appropriate bin. To 
assess this proposal the diameter measurements for 469 pistons and bores, as 
measured from nominal, are given in the file block bore diameter feedforward. 
Quantify the expected reduction in clearance variation when using one (that is, 
no selective fitting), two, three, or four bins of pistons. A suggestion is to define 
the bins by dividing the range in piston and bore diameters (roughly –10 to 10 
microns) into equal widths. 

 
A numerical summary of the data is: 

 

Variable N Mean Median TrMean StDev SE Mean 
piston 469 –0.124 0.000 –0.147 3.219 0.149 
bore 469 –0.366 –0.500 –0.366 2.899 0.134 
clearance 469 –0.242 0.000 –0.190 4.316 0.199 

 

Variable Minimum Maximum Q1 Q3 
piston –9.000 11.000 –2.000 2.000 
bore –10.100 9.200 –2.200 1.500 
clearance –15.100 12.800 –2.750 2.500 
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The range in piston diameters roughly matches –10 to 10, and the variation in 

bore and piston diameters is very similar. The standard deviation of the clearance for 
the given random pairing between piston and bore is 4.3. This provides an estimate 
of the process performance without selective fitting. 

To quantify the expected variation in clearance using selective fitting we use sim- 
ulation. We have two options: we can sample from the existing data to simulate the 
effect of selective fitting or we can model the piston and bore diameter variation and 
sample from the model. In this case, since both the piston and bore diameters have 
a bell-curve shape, as shown by the histograms that follow, they are well modeled by 
Gaussian random variables. 
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MACRO 

To implement the first simulation option where we sample from the existing data, 
we wrote a MINITAB macro that randomly selected a number of bores and corre- 
sponding pistons assuming a given number of bins, and calculated the clearance. 
See Appendix A for more information on writing MINITAB macros. The MINITAB 
macro that assessed the effect of using two bins, defined as pistons and bores with 
negative or positive diameter for this example, follows. 

#with the data file open call the MACRO from the command line as below 
# %'macro2piston.txt' 'piston' 'bore' 

macro2piston piston bore 

mconstant I I2 cpiston borenow pnow test clearan 
mcolumn piston bore borelist allvals temp 

 
let cpiston=1 
let  I2=1 
let temp=1 
let  allvals=0 
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#repeat 50 times to get good estimate of the standard deviation 
while I2<=50 
Sample 200 bore borelist #get a list of 200 bore diameters at random 
let I=1 
while I<=200 
let borenow=borelist(I) #look at the next bore 

 
if borenow>0 #try  to  find  a  piston  that  is also  bigger  than  nominal 

let  test=0 
while test<=0 

let  pnow=piston(cpiston) #look at the next piston 
let cpiston=cpiston+1 
if cpiston>469  #end of list, start again 

let cpiston=1 
endif 

if pnow>0 
let test=1 #found appropriate match 
endif 

endwhile 
let clearan=borenow-pnow 
endif 

if borenow<=0 #try  to  find  a  piston  that  is also  smaller  than  nominal 
let test=0 
while test<=0 

let  pnow=piston(cpiston) #look at the next piston 
let cpiston=cpiston+1 
if cpiston>469 #end of list, start again 

let cpiston=1 
endif 

if pnow<=0 
let  test=1 #found appropriate match 
endif 

endwhile 
let clearan=borenow-pnow 
endif 
if (I2=1) AND (I=1) 

let allvals=clearan 
else 

Stack  allvals  clearan  allvals. #store all the clearance values 
endif 

 
let I=I+1 
endwhile 

let I2=I2+1 
endwhile 

 
let test = MEAN(allvals) 
print  test 
Let test = STDEV(allvals) 
print   test 
ENDMACRO 
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Alternatively, we can simulate choosing random bores and finding the matching 

pistons from the Gaussian models in some programming language. We next give 
Matlab (see http://www.mathworks.com) code that allows us to explore the effect of 
any number of bins. 

function []=selfitkbins(k,num) 
%simulate the effect of using k bins for the piston/bore selective %fitting 

example 
%num equals the number of simulated bore/piston combinations 

 
%the estimated distribution of piston and bore diameters are Gaussian %with 

mean and standard deviation 
pm=–0.12; ps=3.2; 
bm=–.37; bs=2.9; 

 
%we  use k bins of pistons, divide the natural range –10 to 10 for the 

%pistons into intervals of equal width 
%  a better choice would be to use bins of roughly equal frequency 
%we use the same bins definition for both pistons and bores 
%this works because here the distributions are close to the same 

 
%bin intervals bins=[–inf,–
10+(20/k):(20/k):10-(20/k),inf]; 

 
bores=normrnd(bm,bs,num,1); %generate a random sample of bore diameters 
%generate more pistons so we have enough in each bin 
pistons=normrnd(pm,ps,num*2,1); 
%match the bores with the appropriate pistons 
allclear=[];   %keep track of all the clearance values 

 
for i=1:k,   %find the bores in each group 

bind=find(bores<bins(k+1)); 
bind2=find(bores(bind)>=bins(k));    %all  the  bores  that  match  the  group 
pind=find(pistons<bins(k+1)); 
pind2=find(pistons(pind)>=bins(k));     %all  pistons  in  appropriate  bin 
len=length(bind2);   %number of bores to match 
if len>0,   %there are some bores in the bin 

%find some pistons that would match 
temp=pistons(pind2);   %pistons that match 
clearance=bores(bind2)-temp(1:len); 
allclear=[allclear;clearance]; %keep track of all clearance values 

end; 
end; 
hist(allclear) 
mean(allclear) 
std(allclear) 

Conducting the simulation using either method, the expected reduction in clear- 
ance variation is: 
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Number of 
bins 

Expected clearance 
standard deviation 

1 4.3 
2 2.6 

3 1.8 

4 1.6 
 

The benefits of selective fitting are large even for only two bins. The team 
needed to decide whether the substantial costs and logistical difficulties of imple- 
menting feedforward control warranted adopting the approach. To implement 
selective fitting, all piston and bore diameters must be measured. In addition, pis- 
tons need to be placed in the appropriate bin. Logistical problems can occur if one 
of the bins runs out. In this example, the team decided that while feedforward was 
technically feasible other approaches should be considered due to concerns about 
the high cost of implementing selective fitting. 

 
17.3 In the V6 piston diameter example discussed in Chapter 11, the team found that 

piston diameter after Operation 270 was a dominant cause of the final diameter. 
The data are given in the file V6 piston diameter variation transmission. This 
suggested that feedforward control might be a feasible approach. 

a. What are the requirements for feedforward to be feasible in this context? 
b. If feedforward were feasible, assess the potential benefit using the results of 

the variation transmission investigation. 
c. Could the team also use the diameter after Operation 200, rather than the 

diameter after Operation 270, as the input to a feedforward controller? 
 

a. For feedforward to be effective, there must be a way to quickly and cheaply 
measure the diameter after Operation 270 and then to adjust the process to 
compensate for large deviations between the predicted final diameter and the 
target. The prediction comes from the regression equation found in the analy- 
sis of the variation transmission investigation. Since there was no way to make 
the compensating adjustment, feedforward was not feasible in this example. 

b. Using the results of the variation transmission investigation, we fit a regression 
equation relating the final diameter (after Operation 310) and the diameter after 
Operation 270. We get: 

The regression equation is 
diameter  after  OP310  =  64.3  +  0.884  diameter  after  OP270 

 

Predictor Coef SE Coef T P 
Constant 64.27 22.29 2.88 0.005 
diameter 0.88358 0.03739 23.63 0.000 

 

S  =  1.224 R-Sq = 85.6% R-Sq(adj) = 85.4% 

The strong relationship is also shown in the plot that follows: 
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Based on the regression model, using feedforward control and assuming per- 

fect compensation would reduce the standard deviation in the final diameter to 
1.2. This is a large reduction from the baseline standard deviation 3.32. 

c. The diameter after Operation 200 is not a dominant cause of the final diameter 
variation. We can see this clearly in the regression results and plot given as follows: 

The regression equation is 
diameter  after  OP310  =  225  +  0.325  diameter  after  OP200 

 

Predictor Coef SE Coef T P 
Constant 225.12 72.72 3.10 0.003 
diameter 0.32542 0.06467 5.03 0.000 

 

S  =  2.862 R-Sq = 21.2% R-Sq(adj) = 20.4% 
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Feedforward control based on the diameter after Operation 200 would not 

work. The Operation 200 diameter does not provide a good prediction of the 
final diameter. The regression results suggest that if we implement perfect feed- 
forward control based on the Operation 200 diameter, the final diameter variation 
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could be reduced to 2.86 from 3.32 in the baseline. One advantage over using the 
Operation 270 diameter is that there is more opportunity to find an adjuster. 

 
 
CHAPTER 18 

18.1 The bias of the system used to measure camshaft journal diameters tended to 
increase over time. The cause of this increase was not determined. Instead, the 
team introduced a feedback controller. At the start of each shift, a master journal 
with known diameter was measured. If the measured diameter deviated from the 
known value by a large amount, the measurement system was recalibrated. 

a. How could we sensibly define a large deviation in this context? 
b. What would happen to the measurement variation if the measurement 

device were recalibrated every time the master journal was measured, rather 
than only when the deviation from the known dimension was large? 

 
a. We define large by comparing the measurement error to the short-term measure- 

ment variation. For instance, we may decide to recalibrate if the difference between 
the measured value and the known value differ (in absolute value) by more two 
times the standard deviation of the measurement system over the short term. 

b. If the change in measurement bias were slow relative to the short-term measure- 
ment variation, adjusting for any deviation from the known value would increase 
diameter variation. This is tampering as defined by Deming (1986). 

 
18.2 In a machining process, the dominant cause of dimension variation acted in the 

setup family. That is, the dimension variation within a particular setup was 
small relative to the variation from one setup to the next. The existing control 
plan called for a complete process adjustment back to the target based on the 
first observation after each setup. There were more than 200 parts machined 
between setups. The baseline dimension standard deviation was 0.31. The team 
decided to explore a new feedback control scheme based on the average for the 
first five observations after each setup. In an offline investigation, they carried 
out 10 setups and produced 20 parts after each setup without any adjustment. 
The dimension data, scaled so that the target is zero, are given in the file 
machining dimension feedback. 

a. Use a one-way ANOVA to estimate the standard deviation if the process 
could be adjusted so that the dimension averages across all setups were equal. 

b. Use simulation to compare the performance of the existing feedback con- 
troller with the proposed controller that makes a complete adjustment based 
on the average for the first five observations after each setup. 

c. In general, we may design a feedback controller by averaging the output 
from the first n observations after each setup. What considerations help you 
decide how many observations should be used to estimate the process aver- 
age after each setup? 
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a. Plotting dimension by setup we get: 
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From the plot we can see the setup-to-setup variation. Using a one-way 
ANOVA we can partition the overall variation into the within-setup component 
and the variation between setups. The edited results of the ANOVA from 
MINITAB are: 

One-way ANOVA: dimension versus setup 

Analysis  of  Variance  for  dimension 

 
 
 
 

Pooled StDev = 0.2008 

The pooled standard deviation 0.2008 estimates the within-setup variation, the 
dimension standard deviation if we could adjust the process to keep the setup 
averages equal. This is substantially lower than the baseline value 0.31. 

 
b. We can simulate the performance of the two adjustment schemes by: 

Scheme 1: For each setup, subtract the first observation from the remaining 
19 to model the adjustment. Find the standard deviation of the 20x19 
adjusted values to estimate the process performance. 

Scheme 2: For each setup, calculate the average of the first five observations 
and subtract the average from the remaining 15 to model the adjustment. 
Find the standard deviation of the 20x15 adjusted values to estimate the 
process performance. 
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Source DF SS MS F P 
setup 9 15.7998 1.7555 43.56 0.000 
Error 190 7.6573 0.0403   
Total 199 23.4572    
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We get: 

 
 
Adjustment scheme 

Estimated process 
standard deviation 

None 0.34 

First observation 0.29 

Average of first five 0.22 
 

By using the average of five parts, we can nearly reach the estimated minimum 
value 0.20. These comparisons are valid if the number of parts produced between 
setups is much greater than 20 pieces. If the number of parts was only 20 pieces, 
we should include the unadjusted parts (first one or first five parts) in the esti- 
mated standard deviation. 

c. We need to ask questions like: 

How much variation is there within each setup? If there is little variation, we 
need fewer observations. 

How many parts are machined between setups? If there are only a small num- 
ber of parts (or if the cost of poor parts is high), we may wish to make an 
initial adjustment based on a small number of observations and then 
adjust again once a few more observations are available. 

What are the adjustment costs? If the adjustment cost is large, we may decide 
to adjust only if the deviation from target is large. 

 
18.3 In a machining process, there was excess variation in the diameter of a precision 

ground shaft. The shaft diameter was measured for all shafts using a complex 
automated gage (that also measured other outputs). Upon investigation, the 
team discovered that the dominant cause acted in the measurement family. In 
particular, the measurement bias changed from day to day, consistent with the 
pattern observed in the baseline. To explore this bias change further the team 
planned an investigation where the diameter of the same shaft was measured 
each hour for four days. A total of 32 diameter measurements were made. The 
data are given in the file precision shaft diameter feedback, with the output 
being the diameter measured from nominal. The results show a gradual drift. 
The team speculated that the drift was caused by changes in some (unidenti- 
fied) environmental conditions. They decided to reduce the measurement vari- 
ation using a feedback controller. 

a. What type of feedback controller (that is, what prediction equation and what 
adjustment rule) would you recommend in this application? 

b. Suppose the team decided to use a feedback controller based on EWMA fore- 
casts with the smoothing parameter alpha equal to 0.4. What kind of a 
reduction in the measurement variation could they expect? 
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a. The change in the diameter is gradual (that is, does not have sudden shifts). As a 

result, a feedback controller based on the EWMA forecasts is reasonable. The 
adjustments should be made so that if the one-step-ahead forecast is correct and 
the adjustment is perfect, the next value will be zero (that is, diameter equals the 
nominal value). 

b. Using simple exponential smoothing with alpha equal to 0.4 gives: 
 
 

Actual 
Predicted 

1  Actual 
      Predicted 
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–2 Alpha: 0.400 

MAPE: 124.149 
MAD: 0.428 
MSD: 0.290 
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From these results, we predict that with the feedback controller, the measure- 
ment standard deviation would be reduced to roughly 0.54 ( 0.29 ). Note that 
given the small sample size, we are not confident of this prediction. 

If instead we try to optimize the value of alpha, MINITAB gives: 
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1  Actual 
           Predicted 
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However, because of the small sample size, we are not confident that alpha 
= 0.86 would be substantially better than alpha equal to 0.4 when applied to the 
actual process. 
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Alpha: 0.859 
MAPE: 105.760 
MAD: 0.342 
MSD: 0.193 
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CHAPTER 19 

19.1 In the paint film build example introduced in Chapter 3, the baseline standard 
deviation in film build (paint thickness) was 0.67 thousandths of an inch. With 
this variation, to ensure a minimum film build of 15-thousandths of an inch, the 
process was centered at 17. The goal was to reduce the standard deviation to 
0.35, thereby allowing for a reduction in the average film build. 

The dominant cause of film build variation was found using a multivari 
investigation to act in the car-to-car family. Despite further effort, the dominant 
cause was not found. The team decided to adopt the process robustness 
approach. Based on process experience, candidates and their corresponding 
levels were chosen as follows: 

 
 

Candidate Low level High level 

Anode dimension 3.1 3.9 

Conductivity of paint Low High 

Temperature 30 50 

Zone X voltage 450 475 

Zone Y voltage 500 525 

 

The team selected a fractional factorial resolution V experiment with the 16 
treatments given as follows. To reduce the cost of the experiment, panels were 
used rather than cars. With this choice there was a risk of study error. 



Exercise Solutions CD–157 
 

 
 

 

Treatment 
Anode 

dimension 
Conductivity 

of paint 

 

Temperature 

 

X voltage 

 

Z voltage 

1 3.1 Low 30 450 500 

2 3.9 Low 30 450 525 

3 3.1 High 30 450 525 

4 3.9 High 30 450 500 

5 3.1 Low 50 450 525 

6 3.9 Low 50 450 500 

7 3.1 High 50 450 500 

8 3.9 High 50 450 525 

9 3.1 Low 30 475 525 

10 3.9 Low 30 475 500 

11 3.1 High 30 475 500 

12 3.9 High 30 475 525 

13 3.1 Low 50 475 500 

14 3.9 Low 50 475 525 

15 3.1 High 50 475 525 

16 3.9 High 50 475 500 
 
 

For each run, five panels were painted. The order of the treatments was ran- 
domized. Since the dominant cause acted car to car, the team believed the 
unknown dominant cause would act within each run. Film build was measured 
at five locations on each panel. The data for one location are given in the file 
paint film build robustness and in the table that follows. 
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Treatment Order Film build Average Log(s) 

1 14 15.6, 15.3, 15.9, 15.2, 15.8 15.56 –0.51 

2 5 16.0, 16.3, 17.3, 16.2, 16.6 16.47 –0.31 

3 6 15.0, 14.8, 14.9, 15.3, 16.1 15.22 –0.28 

4 2 16.1, 17.6, 17.2, 16.3, 16.1 16.69 –0.16 

5 9 15.7, 15.6, 15.2, 15.2, 15.7 15.49 –0.57 

6 12 17.3, 17.6, 16.8, 17.5, 17.3 17.28 –0.49 

7 13 16.2, 14.4, 15.4, 14.5, 15.9 15.30 –0.09 

8 4 17.3, 16.6, 16.6, 16.4, 17.8 16.94 –0.25 

9 7 16.1, 14.7, 16.2, 14.7, 16.2 15.59 –0.09 

10 16 17.2, 15.8, 16.4, 16.0, 15.8 16.23 –0.24 

11 15 15.4, 15.2, 15.4, 15.3, 15.2 15.29 –1.06 

12 1 16.6, 16.4, 16.4, 16.5, 16.4 16.48 –1.00 

13 3 15.1, 15.4, 15.4, 15.0, 14.4 15.05 –0.41 

14 10 16.8, 16.9, 17.0, 17.3, 16.3 16.89 –0.42 

15 11 15.0, 15.1, 15.0, 14.9, 14.8 14.97 –0.86 

16 8 16.6, 16.7, 16.3, 16.5, 16.3 16.48 –0.79 
 
 

a. Analyze the data using the standard deviation of film build over the five 
consecutive panels to measure performance. Is it possible to make the 
process robust to noise variation? What levels of the candidates do you 
suggest? 

b. The team had a way to adjust the process center. However, we can also use 
the robustness experiment to look for an adjuster. Analyze the data using the 
average film build over the five consecutive panels to measure performance. 
Are any of the candidates adjusters? 

c. In the experiment, the film build at a particular location on five consecutive 
cars (panels) was used to define a run. Suppose, instead, that the five obser- 
vations came from five fixed locations on a single door. What, if any, changes 
are needed in the analysis presented in part a? 

 
a. Plotting the film build by treatment suggests that treatments 11, 12, 15, and 16 

are promising. 
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Using log standard deviation as the response, in MINITAB we get a Pareto 
chart of the effects, given as follows, that shows there are large main effects due 
to conductivity, zone X voltage, and large interactions between conductivity and 
zone X voltage and between conductivity and temperature. 

 
 

BD A: Anode dimension 

D B: Conductivity 

B C: Temperature 
D: Zone X voltage 

BC E: Zone Z voltage 
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To draw conclusions we also look at the following main effects and interac- 
tion plots. 
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Recall that smaller log(s) is better. From the interaction plots, the combination 
of high zone X voltage, high conductivity, and low temperature is best. We are 
fortunate that high conductivity is best in both the large interactions. The high 
level of zone X voltage and conductivity, and low level for temperature corre- 
sponds to treatments 11 and 12. Using the new process settings is expected to 
reduce the baseline standard deviation of 0.67 to 0.09, since the average log(s) for 
treatments 11 and 12 is –1.03 and 10–1.03 = 0.09. 

With the new process settings, the average film build is about 15.9. The team 
had a way to adjust the film build average. The reduction in variation suggested a 
reduction in the average film build to around 16.25 from the current 17. This 
would translate into a 4% reduction in paint volume used. After implementing 
this solution the dominant cause acted within a door. There is ongoing effort to 
address this source of variation. 
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b. Looking for an adjuster, we analyze the experimental results using film build (or 

average film build in each run) as the output. The Pareto plot of the effects is: 
 
 

A A: Anode dimension 
B: Conductivity 
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Input A (anode dimension) is an adjuster. From the plot of film build by anode 
dimension, given as follows, we see that lowering the average dimension lowers 
the average film build. 
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c. When measuring the same five locations on each door, we may expect a system- 
atic difference between the door locations. In the analysis we would want to keep 
track of the location and use an analysis as in Chapter 16. Using a performance 
measure like log(s) is not advised. 

Fi
lm

 b
ui

ld
 



CD–162 Exercise Solutions 
 

 
19.2 In a trim plant, customer complaints about seat appearance prompted manage- 

ment to assign a team the task of reducing shirring variation. The team pro- 
ceeded without using Statistical Engineering and made a number of mistakes. 
Seat cover shirring was scored on a scale of 1 to 6 using boundary samples by 
how much cloth was gathered by the parallel stitching. Shirring scores of 1 to 4 
were acceptable with 1 being the best. Scores of 5 or 6 resulted from either too 
much or too little shirring. A review of historical data suggested that the 
observed shirring score over a week covered all six possible values. Next, the 
team informally checked the measurement system. They found the measure- 
ment system added little variation. The team decided not to look for a dominant 
cause. Rather they moved directly to assessing the feasibility of making the 
process robust. They used brainstorming to select six candidates with two levels 
each as follows: 

 
 

Candidate Low level High level 

Leather thickness 0.8 1.2 

Leather toughness Pliable (soft) Stiff (tough) 

Seam width 9 mm 11 mm 

Material feed Top up Bottom up 

Steam to skin bun Used Not used 

Bun thickness +5 mm –5 mm 

 

The team planned a resolution III fractional factorial experiment with 16 
runs (one for each treatment) as follows: 
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Treatment 
Leather 

thickness 

 

Seam width 
Leather 

toughness 
Machine 

feed 

 

Steam 
Bun 

thickness 

1 High Low Tough Top up Yes High 

2 High Low Soft Bottom up No Low 

3 Low High Tough Top up No Low 

4 Low High Soft Bottom up Yes High 

5 High High Tough Bottom up Yes Low 

6 High High Soft Top up No High 

7 Low Low Tough Bottom up No High 

8 Low Low Soft Top up Yes Low 

9 High High Tough Bottom up No Low 

10 High High Soft Top up Yes High 

11 Low Low Tough Bottom up Yes High 

12 Low Low Soft Top up No Low 

13 High Low Tough Top up No High 

14 High Low Soft Bottom up Yes Low 

15 Low High Tough Top up Yes Low 

16 Low High Soft Bottom up No High 
 
 

Each run consisted of three seats (repeats). The runs were conducted in the 
treatment order given in the table. The data are given in the file seat cover 
shirring robustness and reproduced as follows: 



CD–164 Exercise Solutions 
 

 
 

Treatment Order Seat 1 Seat 2 Seat 3 Average score 

1 13 3 1 2 2.0 

2 16 1 2 1 1.3 

3 7 2 2 2 2.0 

4 6 2 2 2 2.0 

5 10 2 1 1 1.3 

6 1 3 1 3 2.3 

7 11 4 2 1 2.3 

8 15 2 2 4 2.7 

9 5 1 2 2 1.7 

10 3 4 5 2 3.7 

11 14 3 3 2 2.7 

12 9 2 3 3 2.7 

13 8 1 2 2 1.7 

14 2 2 2 3 2.3 

15 4 1 4 2 2.3 

16 12 2 3 1 2.0 
 

a. Explain why choosing the process output as a measure of variation (that is, 
high scores come from either too much or too little shirring) was a poor one. 

b. The goal is to find process settings that lower the average shirring score. Can 
we use any of the candidates to achieve the goal? 

c. Each run consisted of three seats. Discuss this choice in the context of a 
robustness experiment. 

For the last two parts of this question, suppose the first three candidates 
(leather thickness, leather toughness, and seam width) used in the robustness 
experiment were normally varying rather than fixed inputs. 

d. How should the levels of the first three inputs have been chosen? 
e. Discuss changes you would make to the analysis you conducted in part b. 

 
a. We should avoid defining the output in terms of a measure of variation if possi- 

ble. With the shirring score as defined, it is difficult to find a dominant cause. 
Low or high values of the dominant cause both lead to high scores. The team was 
forced into the Make the Process Robust approach. A better scoring system 
would have given low scores for too little shirring and high scores for too much. 
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b. We first plot the shirring values versus the treatment number. In the plot that fol- 

lows, we have added some jitter in the vertical direction (see Appendix C) to 
eliminate the problem of overplotting. 
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There are some promising treatments that result in a low average shirring 

score. Next, we fit a model with all possible terms and present the results using a 
Pareto plot of the effects. 

 
Pareto chart of the effects 

(Response is average, Alpha = .10) 
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There are no large effects. We may be tempted to choose one of the treatments 

that resulted in a low average shirring score as the new process settings. However, 
consider the answer to part c. 

As an aside the particular fractional factorial design selected has the confound- 
ing structure given as follows. The inputs are labeled A, B, and so on, using the 
same order as in the preceding tables. The design is resolution III. This is a poor 
choice, since with 16 runs in six candidates a resolution IV design is possible. 
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Alias Structure (up to order 3) 

 
I – A*D*F – B*C*F 
A – D*F + B*C*D 
B – C*F + A*C*D 
C – B*F + A*B*D 
D – A*F + A*B*C 
E 
F – A*D – B*C 
A*B + C*D – A*C*F – B*D*F 
A*C + B*D – A*B*F – C*D*F 
A*E – D*E*F 
B*E – C*E*F 
C*E – B*E*F 
D*E – A*E*F 
E*F – A*D*E – B*C*E 
A*B*E + C*D*E 
A*C*E + B*D*E 

c. In a robustness experiment, we do not know the dominant cause, and we define a 
run over sufficient time so that the unknown dominant cause has time to act. In 
this example, the team did not know the time family of the dominant cause. It 
seems unlikely that three repeats (seats) for each run is sufficient. This means that 
the dominant cause has likely not acted in (most of) the treatments. With this 
choice of run, the experiment will not be able to identify process settings that are 
robust. The experiment was doomed to failure because of poor planning. 

d. The levels for each suspect should be selected at the extremes of the normal range 
of values. This requires measuring the value of the three suspects over a sufficient 
time span to see the full range before planning the robustness (desensitization) 
experiment. 

e. The goal of the experiment would change to finding settings of the last three 
inputs that result in a lower average shirring score. It no longer makes sense to find 
the best settings of the suspects, since they are varying in the normal process. We 
would refer to only the last three inputs as candidates. The appropriate perform- 
ance measure would be the average shirring score across all runs (and repeats) 
with a given combination of the three candidates. There are now only eight treat- 
ments in terms of the candidates. For example, we would average the shirring 
scores across runs 1 and 10. There is still no guarantee that the experiment will 
provide useful results. We do not know if the three suspects include important, let 
alone dominant, causes. This sort of an experiment, where both candidates and 
suspects are mixed together, is a common mistake when teams know about 
designed experiments but do not follow a structured problem-solving algorithm. 

 
19.3 Torsional rigidity of the weather stripping was the dominant cause of door 

assembly problems. Management set a goal of reducing standard deviation in 
torsional rigidity to 0.3. A baseline investigation found the variation in torsional 
rigidity was roughly 0.55 mm and that the dominant cause acted over the short 
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term and certainly within any half hour. The team looked briefly for a dominant 
cause of rigidity variation without success. Next, they planned a robustness 
experiment with four candidates at two levels each, chosen based on engineer- 
ing judgment. The candidates and levels are: 

 

Candidate Low level (–1) High level (+1) 

Heat (pre) 100 700 

Extruder RPM 22 26 

Tension (pre) 1 5 

Water flow 2 6 
 

The team planned a full factorial experiment with 16 runs, one for each treat- 
ment. The correspondence between treatments and candidate levels is given in 
the table that follows. 

 

Treatment Heat Extruder RPM Tension Water flow 

1 –1 –1 –1 –1 

2 –1 –1 –1 1 

3 –1 –1 1 –1 

4 –1 –1 1 1 

5 –1 1 –1 –1 

6 –1 1 –1 1 

7 –1 1 1 –1 

8 –1 1 1 1 

9 1 –1 –1 –1 

10 1 –1 –1 1 

11 1 –1 1 –1 

12 1 –1 1 1 

13 1 1 –1 –1 

14 1 1 –1 1 

15 1 1 1 –1 

16 1 1 1 1 
 

Each run consisted of running the process for half an hour after the candi- 
date levels had been reached. Within each run, 10 weather-strip samples were 



CD–168 Exercise Solutions 
 

 
selected spread out over the half hour. The order of the runs was randomized. 
The torsion rigidity of each of the 10 weather-strip samples for each treatment 
is given in columns s1 to s10 of the table that follows and in the file weatherstrip 
torsional rigidity robustness. 

 
 

Treatment Order s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

1 13 10.3 13.0 11.5 11.8 10.7 9.9 10.7 11.5 11.0 11.1 

2 6 11.5 13.0 10.4 11.1 10.9 10.6 12.0 9.3 9.2 9.3 

3 9 11.6 13.0 10.4 16.0 10.3 10.8 11.5 11.0 11.3 10.9 

4 1 11.5 11.7 10.4 11.7 14.0 11.7 10.4 11.7 10.4 10.4 

5 3 14.0 11.7 11.7 19.0 11.9 11.7 12.1 13.0 11.1 11.0 

6 11 22.0 15.0 18.3 11.7 20.3 21.0 12.6 13.6 14.7 15.1 

7 5 9.1 9.6 10.2 9.8 9.0 9.7 10.0 12.0 9.0 8.8 

8 14 10.0 9.1 10.6 10.4 10.8 11.0 11.1 10.8 10.5 10.8 

9 2 11.7 12.5 11.9 11.7 20.0 14.0 10.4 11.5 11.7 20.0 

10 10 10.3 11.6 10.5 10.6 13.0 14.0 11.7 10.3 15.0 11.8 

11 7 10.3 10.5 11.0 11.4 9.8 10.4 11.7 11.8 11.5 11.9 

12 15 11.6 11.0 11.4 11.3 12.0 10.6 10.9 10.7 10.7 10.7 

13 16 10.6 10.7 11.6 10.6 10.7 22.0 11.0 10.4 10.4 23.0 

14 8 9.1 10.4 10.6 11.4 10.9 10.4 10.8 10.9 11.0 11.6 

15 12 10.3 11.0 12.0 12.1 10.5 10.7 11.3 11.4 10.8 10.9 

16 4 10.4 10.4 10.4 10.5 10.9 11.4 9.0 9.6 9.8 10.2 

 
 

a. To analyze the results of this robustness experiment, what performance 
measure(s) do you recommend and why? 

b. Analyze the experimental results using your chosen performance measure(s). 
What can you conclude? 

 
a. The goal of the experiment is to find process settings that results in less variation 

in torsional rigidity (as the unknown dominant cause acts). The performance 
measure log(s), where s is the standard deviation of the rigidity values across the 
10 repeats within each run, is appropriate. A secondary performance measure is 
the average rigidity across each run. If we find process settings that result in less 
rigidity variation, we may need to adjust the process center back to the target. 

b. Plotting the torsional rigidity values by treatment, we get: 
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There are some treatments that have much less rigidity variation than others. 
Fitting a complete model (using the log(s) performance measure) a Pareto plot of 
the effects gives: 
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Candidate C (tension) has a large effect. Looking at the main effects plots sug- 
gests that the high level of tension gives substantially lower rigidity variation. 
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However, the average torsional rigidity variation at the high level of tension is 
0.8 (e–0.2), much higher than the baseline variation of 0.55. In fact, even the best 
treatment, number 12, has a variation of 0.47, only marginally better than the 
baseline. The experiment has identified a candidate (tension) that can be changed 
to increase rigidity variation. The experiment failed to find more robust process 
settings. The team was curious about this result and decided to investigate even 
higher tension levels. This investigation also failed since high tension led to other 
negative side effects and little reduction in rigidity variation. The approach was 
abandoned. 

 
 

CHAPTER 20—NO 

EXERCISES CHAPTER 21 

21.1 Discuss whether lessons learned are properly maintained in corporate memory 
in your organization. What could be done to improve the situation? 

The answer depends on the organization. 
 

21.2 In the paint film build example described in Chapter 19, the team found new 
process settings that resulted in reduced car-to-car variation in film build. To 
validate the proposed solution, 80 cars were painted over one day with the set- 
tings given in the following table. These were the best settings found in the 
robustness investigation. The film build values from five specific positions on 
one door for each of the cars are available in the file paint film build validation. 

 
Candidate Setting 

Anode dimension 3.5 (midpoint) 

Conductivity of paint High 

Temperature 30 

Zone X voltage 475 

Zone Y voltage 500 

 
a. The baseline film build standard deviation was 0.68. The problem goal was 

to reduce the standard deviation to 0.35, and the robustness experiment 
results suggested that changing settings would reduce the standard deviation 
to about 0.37. Has the solution been validated? 

b. What, if anything, do the validation results tell us about the home of the 
dominant cause in the remaining variation? 
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a. We analyze the data as in the baseline investigation with the following numerical 

and graphical summaries. 
 

Variable N Mean Median TrMean StDev SE Mean 
film build 400 16.208 16.222 16.212 0.302 0.015 

 

Variable Minimum Maximum Q1 Q3 
film build 15.411 16.880 15.987 16.422 
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The overall standard deviation has been reduced to 0.302, a substantial reduc- 
tion from the baseline standard deviation 0.68, and exceeding both the problem 
goal of 0.35 and the expected improvement. The average film build is 16.2. Fur- 
ther efforts were made to bring the average to 16, a little more than 3 ⋅ 0.30 above 
the minimum acceptable film build of 15 units. With these changes, the ultimate 
paint cost savings were about 6%. 

b. As suggested by the plot that follows, the team could now look for further 
improvement by reducing the position-to-position variation in film build. 
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Looking at the results from a one-way ANOVA, we estimate that if we could 
eliminate the position-to-position variation, the film build variation would be fur- 
ther reduced to 0.21. 

Analysis of Variance for film build 
 

Source DF SS MS F P 
position 4 19.7020 4.9255 113.79 0.000 
Error 395 17.0980 0.0433   
Total 399 36.8000    

 

Pooled  StDev  = 0.208 

21.3 In the truck pull example described in Chapter 17 and Exercise 17.1, a feed- 
forward controller was implemented to compensate for the effect of truck- 
frame geometry on pull. After the feedforward system had been operating 
successfully for some time, management decided to review its operation. The 
four frame geometry measurements and left and right caster and camber were 
recorded for roughly a month of production consisting of over 6600 trucks. The 
data are given in the file truck pull validation. 

a. The standard deviations for caster and camber before implementation of the 
feedforward controller can be estimated from the 100-truck investigation 
described in Chapter 17. From the same investigation, the team predicted the 
possible reduction in standard deviation using a feedforward controller. A 
summary is given in the following table. 

 

Characteristic 
Baseline standard 

deviation 
Predicted reduction in 

standard deviation 

Left caster 0.90 0.18 

Right caster 0.83 0.20 

Left camber 0.51 0.13 

Right camber 0.41 0.10 
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Do the results of the investigation validate the reduction in left and right 

caster variation due to the feedforward controller? 
b. For each of the two caster characteristics, conduct a regression analysis to see 

if the feedforward controller can be improved. Recall that the feedforward 
controller should be compensating for variation in the frame geometry. 

c. Repeat the analysis in parts a and b for left and right camber. 
 

a. To see if we can validate the process improvement, we summarize the caster 
characteristics from the validation investigation numerically and graphically. 

 

Variable N Mean Median TrMean StDev SE Mean 
lcast 6632 3.5225 3.5120 3.5193 0.2461 0.0030 
rcast 6632 4.0273 4.0260 4.0269 0.2314 0.0028 

 

Variable Minimum Maximum Q1 Q3 
lcast 2.6630 4.8560 3.3570 3.6830 
rcast 3.0650 4.9640 3.8680 4.1820 

 
 

9 

8 

7 

6 

5 

4 

3 

2 

1 

0 
 

3 4 
Lcast 

5 
 
 
 
 
 

4 
 
 
 
 
 

3 
 
 
 

1000 2000 3000     4000 5000 6000 
5 

Index 

 
8 5 

7 
 

6 
 

5 4 

4 
 

3 
 

2 

1 3 

0 
 

3 4 5 
Rcast 

 
1000 2000 3000     4000 5000 6000 

 
Index 

 
 

The standard deviations for left and right caster (0.25 and 0.23, respectively) are 
much smaller than they were before implementation of the feedforward controller. 
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The reduction in standard deviations did not completely meet the predictions based 
on the overly optimistic assumption that perfect compensation was possible. The 
feedforward controller was a great success. 

b. To check the operation of the feedforward controller for the caster characteristics, 
we fit a regression model for left caster (and right caster) as a function of the 
truck frame characteristics—left front, right front, left rear, and right rear. If the 
feedforward controller is working properly, there will be at most a weak relation- 
ship between caster and the frame geometry characteristics. 

 
The regression equation is 
lcast = 3.86 + 0.00623 left front + 0.0732 right front - 0.0213 left rear 

- 0.0978 right rear 
 

Predictor Coef SE Coef T P 
Constant 3.85986 0.09292 41.54 0.000 
left  fro 0.006230 0.004943 1.26 0.208 
right  fr 0.073226 0.004031 18.16 0.000 
left  rea -0.021255 0.004744 -4.48 0.000 
right  re -0.097787 0.005149 -18.99 0.000 

 

S  =  0.2351 R-Sq = 8.8% R-Sq(adj) = 8.7% 
 

The regression equation is 
rcast = 3.76 - 0.0718 left front + 0.0840 right front + 0.00547 left rear 

+  0.00966  right  rear 
 

Predictor Coef SE Coef T P 
Constant 3.75977 0.08599 43.73 0.000 
left fro -0.071805 0.004574 -15.70 0.000 
right fr 0.084034 0.003731 22.53 0.000 
left rea 0.005466 0.004390 1.25 0.213 
right re 0.009664 0.004765 2.03 0.043 

 

S  =  0.2176 R-Sq = 11.7% R-Sq(adj) = 11.6% 
 

From the solution for part a, the standard deviations for left and right caster are 
0.2461 and 0.2314 when using the feedforward controller. The corresponding 
residual standard deviations in the regression analysis are 0.2351 and 0.2176. 
The residual standard deviations estimate the process standard deviation if we 
could hold the frame geometry fixed or totally compensate for its effect. Because 
the residual standard deviations are so close to the caster standard deviations with 
the existing feedforward controller, the effects of frame geometry on the outputs 
are very small. In other words, allowing for the inevitable small measurement and 
adjustment errors, the existing feedforward controller cannot be improved further 
using the frame geometry characteristics. 
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c. The summary of the current process performance, in terms of camber, is 

 

Variable N Mean Median TrMean StDev SE Mean 
lcmb 6632 0.49288 0.49000 0.49239 0.16324 0.00200 
rcmb 6632 0.47708 0.48200 0.47883 0.16222 0.00199 

 

Variable Minimum Maximum Q1 Q3 
lcmb -0.42600 1.45600 0.38200 0.60100 
rcmb -0.39300 2.05400 0.37600 0.58400 

To check the operation of the feedforward controller for camber, we fit a sep- 
arate regression model for left camber and right camber, as a function of the truck 
frame characteristics. 

The regression equation is 
lcmb = - 1.69 + 0.0761 left front + 0.00141 right front + 0.0727 left rear + 

0.0669  right  rear 
 

Predictor Coef SE Coef T P 
Constant -1.69356 0.05600 -30.24 0.000 
left fro 0.076120 0.002979 25.55 0.000 
right fr 0.001407 0.002430 0.58 0.563 
left rea 0.072739 0.002859 25.44 0.000 
right re 0.066909 0.003103 21.56 0.000 

 

S  =  0.1417 R-Sq = 24.7% R-Sq(adj) = 24.7% 
 

The regression equation is 
rcmb  =  0.761  - 0.0482  left front  +  0.0192  right  front  - 0.0242  left rear 

+ 0.0275 right rear 
 

Predictor Coef SE Coef T P 
Constant 0.76091 0.05994 12.69 0.000 
left  fro -0.048213 0.003189 -15.12 0.000 
right  fr 0.019163 0.002601 7.37 0.000 
left  rea -0.024170 0.003060 -7.90 0.000 
right  re 0.027540 0.003321 8.29 0.000 

 

S  =  0.1517 R-Sq = 12.7% R-Sq(adj) = 12.6% 

The current standard deviations for left and right camber are 0.1632 and 
0.1622, respectively. The corresponding residual standard deviations from the 
regression analysis are 0.1417 and 0.1517. The team was surprised by the left 
camber results and found a small error in the mathematical model used to predict 
left camber from the frame geometry. This error was corrected; however, because 
camber has a small effect on pull, there was no noticeable reduction in the pull 
standard deviation. 
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Chapter 2 Supplement 
Describing Processes 

 
 
 
 

S2.1 PARETO PRINCIPLE 

The Pareto principle was introduced by Vilfedo Pareto (1848–1923) to describe the distri- 
bution of wealth. Pareto found that in most societies, the majority of the wealth was con- 
trolled by a small number of people. Over time, the principle found application in many 
areas. J. M. Juran was the first to apply the idea to manufacturing processes. He coined the 
terms vital few and trivial many to describe problems (Juran et al., 1979). The Pareto idea 
is sometimes summarized as the 80/20 rule, meaning, for example in a manufacturing context, 
that 80% of the process problems are attributable to 20% of the process issues. 

Pareto analysis is best presented in graphical form using a bar graph to illustrate the rela- 
tive importance of the various categories. For example, Figure S2.1 shows a Pareto chart 
of one month’s records of rod scrap data (discussed further in Chapter 6). The Pareto plot 
shows that 62% of the scrap was found at a grinding operation. This suggests focusing on 
grind scrap. 

 
100 

 
100 80 

 
60 

 
 

50 40 

 
20 

 
0 

 

Defect 

Count 

0 

Grind Bore Broach Assembly Others 
 
 

85 24 14 6 2 
Percent 
Cum% 

64.9 
64.9 

18.3 
83.2 

10.7 
93.9 

4.6 
98.5 

1.5 
100.0 

 
 

Figure S2.1 Pareto chart for scrap by operation for the rod line. 
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We use the Pareto principle extensively to choose projects and focus the problem. The 
Pareto principle implies that, for any problem, there are one or two dominant causes. 

 
 
S2.2 DEFINING DOMINANT CAUSE 

To define dominant cause we use the well-known conditional variance formula 
 

Var(Y ) Varx ( E(Y X )) E( Var(Y X )) 
 

See, for example, Kalbfleisch (1985). Replacing Y with the output and X with the input, we 
have 

 

( ) ( )( ) ( )( )2 2
sd output sd E output input E sd output input= +  

 

The first term under the square root sign can be thought of as the variation in the output 
explained by the input. The second term is the residual variation that would remain if we 
could hold the input constant. The input is a dominant cause if the first term is large compared 
to the second. 

Formally, we call a cause dominant if it explains more than half the variation. This 
implies the residual standard deviation must be less than 1 2 0.71, or roughly 70% of 
the overall standard deviation, sd(output). 

A formal derivation of dominant cause when the output is discrete or binary is difficult. 
For a binary output, we use an informal definition and say an input is dominant if for some 
level of the input the proportion defective is substantially reduced. 

 
 
S2.3 DOMINANT CAUSE INVOLVING TWO (OR MORE) 
INPUTS 

For many problems we can find a dominant cause that involves a single input. However, for 
some problems the situation is more complex. Possibilities include: 

1. The dominant cause involves a single input. 

2. There are two (or more) large causes (that is, no dominant cause). 

3. The dominant cause involves two (or more) inputs. 

Later, we see that it is important to understand the difference between these three cases, 
especially when considering possible solutions. We illustrate using a simple situation 
where the output varies between 0 and 10, and there are two inputs that we examine at two 
levels each (low and high, coded –1 and +1). Figure S2.2 shows the four values as circles 
and also plots the average of the two values at each the low and high levels of input 1 using 
a diamond. 
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Figure S2.2 Plots illustrating the three cases for a dominant cause. 
 

Case one is illustrated in the top left panel of Figure S2.2, where there is a single input 
(input 1) that explains the variation in the output. Here the second input has no effect on the 
output. In case two, as given by the top right panel of Figure S2.2, there are two large 
causes (inputs), but the effect of each input does not depend on the level of the other input 
(we say the effects of the two inputs on the output are additive). A dominant cause involv- 
ing two inputs is presented in the bottom panel of Figure S2.2. This last case is the most 
complicated. We say a dominant cause involves two inputs if, for both inputs, we can 
observe close to the full extent of output values as the input changes for some value of the 
other input. In the plot, for the high level of input 1, changing the level of input 2 results in 
a large difference in the output, while similarly, for the high level of input 2, changing the 
level of input 1 results in a large difference in the output. There are gray areas among the 
three cases. 

A dominant cause involving two or more inputs is related to the idea of an interaction. 
We say there is an interaction between input 1 and input 2 in their effect on the output if the 
relationship between input 1 and the output depends on the level input 2 and vice versa. 
Note that there can be an interaction between input 1 and 2 in their effect on the output even 
if there is no correlation between input 1 and 2 (that is, if input 1 and 2 vary independently 
of one another). We see the interaction between input 1 and input 2 clearly in the bottom 
panel of Figure S2.2, since the effect of changing from the low to high level of input 2 is 
much greater when input 1 is at its high level than when it is at its low level. 
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We return to the issue of the consequences of a dominant cause involving two (or more) 

inputs in Chapter 10 and its supplement, where we discuss finding such dominant causes, 
and in Chapter 14, where we consider possible solutions for problems with such a domi- 
nant cause. 

 
 
S2.4 CLASSIFYING CAUSES OF VARIATION 

There are several ways to classify causes of variation. For our purposes, we are interested 
in identifying inputs that make a large contribution to the variation of the output. We call 
these dominant causes. In the application of statistical process control (SPC), causes are 
classified as common or special. Taguchi (1986) uses the term noise factor and considers 
internal, external, and unit-to-unit noise. Here, we discuss the relationships among these 
classifications. 

There is considerable confusion in SPC about the definition of special and common 
causes that are sometimes called assignable and chance causes. This classification depends 
on the control charting procedure in use and on how subgroup data are collected. A dominant 
cause may be either special or common. Suppose that subgroups for the control chart are 
based on five units produced consecutively by the process. If the dominant cause changes 
from part to part (that is, within the subgroups), it will be a common cause. If the dominant 
cause changes more slowly (that is, between subgroups), then it will be special. 

We find that control charts are not useful in the identification of dominant causes. The 
main difficulties are that when the chart signals, this means that some input has changed but 
there is no clue given as to which input. The effect of the input is large with respect to the 
within-subgroup variation but may not be a dominant cause of the overall variation of the out- 
put. Furthermore, it is not predictable when the chart will signal and it is difficult to organize 
resources to look immediately for the cause. If the search is postponed, then the input may 
have changed again by the time it is scrutinized and the information about its effect will be lost. 

Taguchi’s noise factors are varying inputs that affect the output. In other words, noise factors 
are what we call causes. What Taguchi calls control factors are what we call fixed inputs that can 
be changed only by deliberate intervention. The use of the word factor comes from the language 
of experimental design, which plays a large role in Taguchi’s variation reduction approach. He 
classifies causes as internal, external, and unit-to-unit. Internal causes are inputs that change 
over the life of the product. External causes are inputs that change in the usage environment, and 
unit-to-unit causes change from part to part at the time of production. In the refrigerator exam- 
ple discussed in Chapter 1, the identified external causes of frost buildup were ambient temper- 
ature and humidity, the amount of food added to the refrigerator, and the number of times the 
door was opened. An internal cause, not identified, was the deterioration of the door seals 
over time. The difference in compressor performance from one refrigerator to the next was a 
unit-to-unit cause. We discuss Taguchi’s approach to variation reduction in chapters 16 and 19. 

In general, we do not believe that using an experiment is an efficient way to identify a 
dominant cause of variation. Instead, we propose to use much simpler process investiga- 
tions that do not involve changing fixed inputs or controlling varying inputs to search for 
such a cause. Within the Statistical Engineering algorithm, experimental design is needed 
to verify the contribution of a potential dominant cause, and in determining the feasibility 

 of some of the variation reduction approaches. 
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S2.5 PROCESS CAPABILITY 

There is an alphabet soup of capability ratios, such as Ppk, Cpk, and so on, that are used to 
quantify the relationship between the process center and variation, and the specification 
limits. See Kotz and Johnson (2002) and their discussion for a review of the merits and lia- 
bilities of various capability ratios. We give a brief discussion of Ppk since it is sometimes 
used to set the goal for a process improvement problem. 

The index Ppk is defined as 
distance from the process average to the closest specification limit 

Ppk   
3⋅ stdev 

 

where stdev is the standard deviation of the process output. Larger values of Ppk indicate 
smaller variation. The index is increased by better locating the average near the middle of 
the specification limits and/or by reducing the variation among the parts (that is, decreasing 
stdev). Note how Ppk is a function of both kinds of variation (off-target and part-to-part variation) 
and gets bigger as one or another kind of variation gets smaller. 

For the angle error data discussed in the context of the camshaft lobe runout example 
in Chapter 2, the average and standard deviation are given as –21.3 and 71.5, respectively. 
The specification limits for angle error are ±400; thus the specification limit closest to the 
average is –400. Hence, the value of the capability index Ppk is 

−21.3 − (−400) 
Ppk   

3 ⋅ 71.5 
1.77 

Such a large value of Ppk indicates that the closest specification limit is far from the 
average relative to the process variation, as described by three times the output standard 
deviation. Since the histogram for angle error data is bell shaped, this means that it is highly 
unlikely that any of the observed angle errors will be outside of the specification limits. 
This can be clearly seen in the histogram of angle error given in Figure S2.3, where we 
added dashed lines to show the specifications. 
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Figure S2.3 Histogram of angle error with specification limits. 
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Like all other summary measures of process performance, capability ratios depend on 
how the data are collected. If the sample is collected over a short time or when conditions 
are exceptional, the calculated capability ratio may be very misleading about the process 
performance in general. 

 

S2.6 RELATING THE TWO KINDS OF VARIATION 

We have described two kinds of variation, deviation of the average from the target and variation 
among parts as measured by the standard deviation. Suppose we have a set of n values for 
an output given by y1, y2,..., yn. We provide a formula that relates the two kinds of variation 
to the variation from the process target T. The average and standard deviation are 

 
 

avg  1 ... ny y
n

+
 

 
stdev  

(y1 − avg) + ... + (yn  − avg) 
n − 1 

 

We define the root mean squared deviation (RMSD) of the data from the target by 
 

( ) ( ) ( )2 2 2
1 2 ... ny T y T y T

RMSD
n

− + − + + −
=

 
Note that RMSD is a measure of the average variation from the target. To relate RMSD to 
the two kinds of variation, we need the following result: 

 
(y1 − avg) +... + (yn − avg) = 0 

 

That is, the sum of deviations of a set of numbers from their average is zero. We can show 
this result by noting that we can add the pieces before subtracting. That is, 

 
(y1 −avg) +... + (yn − avg) = y1 +... + yn − (avg +... + avg) 

= n * avg − n * avg 

0 
 

Now to decompose the RMSD into the two kinds of variation, we split each term in the 
numerator of the sum into three pieces. 

 

( ) ( ) ( ) 22
i iy T y avg avg T− = − + −    

                                                             = ( ) ( )( ) ( )2 22i iy avg y avg avg T avg T− + − − + −  
 

We can add the three pieces separately. The sum of the first pieces is 
 

2 2 
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( ) ( )2 2
1 ... ny avg y avg− + + −  

Note that in the second and third pieces (avg – T) is a constant that is the same for all terms 
in the sum (i.e., it is the same for all i). The sum of the second pieces is 

 
( ) ( ) ( )12 ... 0navg T y avg y avg− − + + − =    

 

The third piece is the sum of n constants and is n(avg – T)2. Combining the pieces we have 
 

( ) ( ) ( )

( )

( )

2 2
21

22

22

...

1

ny avg y avg
RMSD avg T

n
n stdev avg T

n

stdev avg T

− + + −
= + −

−
= + −

≈ + −

 

 
In words, the squared average deviation from the target is approximately the square 

root of the sum of squares of the measures of the two kinds of variation. The relative con- 
tributions of the two kinds of variation can be assessed from this formula. For example, if 
the stdev is large and the avg is close to target, we can make very little gain by moving the 
process average closer to the target. 

If the target T is an ideal value for the output, then there is likely to be some cost to the 
supplier or loss to the customer when the actual output deviates from the target. The RMSD 
has the property that it is approximately linear in the deviation from target yi − T when yi 

is relatively far from T (relatively here means compared to the other output values). Close 
to the target, the contribution of yi − T to the RMSD is small. In other words, RMSD is a 
reasonable surrogate for the cost associated with a deviation from target. 

 

S2.7 VARIATION WITHIN GROUPS AND GROUP TO GROUP 

In the camshaft lobe runout example, we showed how aligning the average angle error for 
each lobe could reduce the overall standard deviation. Using the angle error data as an 
example, we give a general formula to connect the overall standard deviation to the varia- 
tion group to group and within groups. Here a group is defined by the lobe position. 

As in the previous section, we need a bit of algebra to demonstrate the decomposition. 
Recall that there are 108 camshafts, each with 12 lobes. Let yij represent the angle error for 
lobe position j (= 1, 2, ..., 12), and camshaft i (= 1, 2, ..., 108). Then the overall standard 
deviation is 

 

( ) ( )22
1,1 108, 12...

108 12 1
y avg y avg

stdev
− + + −

=
× −
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where avg is the average of the 1296 values. For any term in the sum, if avgj is the average 
of the angle errors at lobe position j, we can write the squared deviation from the average 
as three pieces: 

 
( ) ( ) ( )

( ) ( )( ) ( )

22

2 2
2

ij ij j j

ij j ij j j j

y avg y avg avg avg

y avg y avg avg avg avg avg

 − = − + − 

= − + − − + −
 

For each lobe position, we can add the pieces separately. Note that the sum of the middle 
piece is zero because it is a constant times the sum of deviations from the jth position aver- 
age. Looking at the sum for position j, we have 

 
( ) ( ) ( ) ( )2 2 2 2 2

1, 108, 1, 108,... ... 108( )j j j j j j jy avg y avg y avg y avg avg avg− + + − = − + + − + −

 
In this equation, the first part of the sum on the right is directly related to the standard devi- 
ation of the output within position j, denoted stdevj. That is, 

 
( ) ( )2 2 2

1, 108,... 107j j j j jy avg y avg stdev− + + − =  

Hence, adding over all positions, we have 
 

( ) ( )22
1,1 108,12...y avg y avg− + + −  

= ( ) ( )2 22 2
1 12 1 12107( ... ) 108 ...stdev stdev avg avg avg avg + + + − + + −   

= ( )2 2 2
1 12 1 12107 ... 108 11 ( ,..., )stdev stdev stdev avg avg+ + + ×  

 

Dividing both sides by 1295 (= 108 ⋅ 12 – 1) and taking the square root we get 
 

 

2 2 2
1 12 1 12

2 2 2
1 12 1 12

107 ... 108 11 ( ,..., )
1295 1295

( ,..., ) ( ,..., )

stdev stdev stdev avg avgstdev

avg stdev stdev stdev avg avg

 + + × = +

≈ +
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In words, we see that the overall standard deviation is determined approximately by 

two pieces. The first is the average squared within-position standard deviation. The second 
is the squared standard deviation of the within-position averages. One way to reduce the 
overall standard deviation is to ensure the second term is zero. That is, we can make sure 
that there are no differences in the averages for the 12 lobes. 

In the camshaft lobe runout example, the average and standard deviation of angle error 
for each position are: 

 
Lobe avg stdev 

1 17.76 61.16 

2 45.31 67.62 

3 –19.37 57.62 

4 19.69 63.49 

5 –30.92 59.16 

6 –43.14 60.65 

7 –20.58 60.03 

8 –30.43 59.22 

9 –28.61 61.10 
10 –73.96 56.83 

11 –1.46 67.42 

12 –89.85 63.53 

 
If we could control the process so that the average angle error was constant for each posi- 
tion, then the overall standard deviation would be reduced from 71.5 to 

 
2 2
1 12( ,..., ) 61.6avg stdev stdev =  

In general, we can partition the overall standard deviation into variation within group 
and group to group. Aligning the group averages reduces the standard deviation by elimi- 
nating the variation due to group-to-group differences. 

The division of the standard deviation into parts is the basis for the analysis of variance 
(ANOVA), a powerful numerical analysis method used in the book and discussed in 
Appendix D. 

 
 
S2.8 GAUSSIAN MODEL 

The Gaussian model is widely applicable. We describe some of its key properties. The 
Gaussian model describes the output of a process with a symmetric bell-shaped histogram. 
We repeat the form of the idealized curve in Figure S2.4. 
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Figure S2.4 A Gaussian output model. 

We prefer the name Gaussian curve to the more usual Normal curve because of the 
baggage that the word normal carries. We have been questioned many times by process 
engineers and production managers who look at the output from some statistical software 
that indicates that the process data is not “normal” and, hence, believe that something is 
wrong in the process. There is nothing abnormal or unusual about a process with a histogram 
of a different shape. 

The area under the curve over any interval describes what proportion of the output values 
fall in that interval. We can specify the curve by two parameters, the mean (or center of 
the symmetric curve) and the standard deviation, a measure of the variation or spread of the 
values. The mean and standard deviation associated with the model are directly analogous 
to the avg and stdev of the histogram. 

The Gaussian model has the beautiful property that it predicts that a fixed percentage 
of the output will fall within the interval (mean ± c standard deviation) for any constant c. 
For example, the percentages are approximately: 

Within one standard deviation of the mean 68% 

Within two standard deviations of the mean 95% 

Within three standard deviations of the mean almost 100% 

There is a strong connection between the interpretation of capability measures such as 
Ppk and these percentages. If the process average is on target and we can describe the output 
by a Gaussian model, we can directly relate the magnitude of Ppk and the proportion of 
output that is out of specification: 

 
 
Ppk 

Parts per million 
out of specification 

1.00 2700 

1.33 64 

1.67 0.6 
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These numbers should not be taken too seriously because a Gaussian model will never 
describe the process output perfectly. 

In the book we rarely rely on formal statistical analysis. However, much of the formal 
analysis that we do present depends on the assumption that we can apply a Gaussian model. 
We often assume we can capture the effects of measured inputs in the mean of the model. 
The effects of all other varying inputs are lumped together in the standard deviation. For 
example, to formally analyze the position-to-position differences of the angle errors in the 
camshaft lobes, we assume that a Gaussian model can describe the output of the process 
where each position has a separate mean to explain the effect of position. We also assume 
that the variation within each position is the same since this variation captures the effect of 
all other varying inputs. Thus we assume that the standard deviation within each position is 
the same. We can describe the model pictorially using Figure S2.5 where we show the models 
for only three of the lobes to make it easier to interpret. 
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Figure S2.5 Graphical view of a model for lobe position differences. 
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An Algorithm for Reducing 
Variation 

 
 
 

S4.1 COMPARISON OF VARIATION REDUCTION 
ALGORITHMS 

There are many competing algorithms for solving chronic manufacturing problems and 
improving process performance. Some manufacturing organizations have invented or 
adapted an algorithm specialized to their own processes. Consulting companies have created 
their own versions, complete with acronyms and specialized language, driven partly by mar- 
keting considerations. We are perhaps also guilty of this sin. We have partially derived our 
algorithm from the one proposed by Shainin (1992, 1993). 

Six Sigma (Harry and Schoeder, 2000) is a popular example. The algorithm is known 
by its acronym DMAIC (Define, Measure, Analyze, Improve, Control). The Define stage is 
sometimes omitted. The stages are divided into substages in a variety of ways that depend on 
which version you examine. See, for example, Breyfogle (1999). 

The more detailed 12-step Breakthrough Cookbook associated with Six Sigma is 
described in Harry (1997, p. 21.19). A Six Sigma program is much more than the algorithm 
and the associated statistical methods and tools. It includes planning for implementation and 
ongoing management. For example, Six Sigma programs involve the training, certification, 
and deployment of specialized experts (Black Belts) in the use of the algorithm. 

Scholtes (1988, pp. 5–19) provides a second example. The main stages of this algo- 
rithm are: 

 
 

Understand 
the process 

 
Eliminate 

errors 

 
Remove 

slack 

 
Reduce 
variation 

Plan for 
continuous 

improvement 
 

Each stage is further divided into a number of substages, used in completing the stage. 
Scholtes provides many other processes to support the algorithm, especially to help with 
the problem selection and the team operation. 

Both the Six Sigma and Scholtes algorithms are designed to apply to processes in gen- 
eral and to many different kinds of problems. They are not specialized to reducing variation 
in high- to medium-volume manufacturing processes, as is Statistical Engineering. 
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In our view, these algorithms (including the one we propose) share two common elements: 

• They are based on the diagnostic and remedial journeys described by Juran and 
Gryna (1980) and Juran (1988), as given in the figure that follows. The idea is 
that if we know the cause of the problem, we are more likely to find efficient 
and effective remedies or solutions. 

 

Define the
Problem Find the Cause Implement a

Solution

Diagnostic Journey Remedial Journey

 
 

• They make heavy use of empirical (statistical) methods to increase knowledge 
about process behavior, to identify causes, and to validate remedies. 

The differences among the algorithms lie in the detailed elaboration of the three boxes 
in the diagnostic and remedial journey. For example, we have explicitly included a stage in 
which we assess the measurement system for the output to ensure that it is not the dominant 
cause. The DMAIC and Scholtes algorithms include this assessment within a stage and, 
hence, give it a lower profile. We have chosen to highlight measurement system assessment 
because, in our experience, there are often serious problems with the measurement systems 
in high- to medium-volume manufacturing processes. 

The explicit focus on a dominant cause of variation, as defined in Chapter 2, is another 
important differences between the Statistical Engineering algorithm and the Six Sigma and 
Scholtes algorithms. We also emphasize the use of the method of elimination and families 
of variation to help find the cause in an economical and timely manner. We give more detail 
on families of variation and the method of elimination in Chapter 9. 

One unique feature of the Statistical Engineering algorithm is the idea that the team 
should consider potential remedies and select a working variation reduction approach before 
deciding if they need to find the dominant cause of the variation. The algorithm allows for 
improvement without knowledge of a dominant cause. We think that this consideration will 
increase the efficiency of the process improvement and lead to better remedies. 

See De Mast (2003 and 2004), De Mast et al. (2000), and Logothetis (1990) for a detailed 
methodological comparison of the Shainin, Six Sigma, and Taguchi strategies for quality 
improvement. Here we do not compare or contrast Statistical Engineering with the Taguchi 
three-phase program. See, for instance, Ross (1988) and the modification given in Taylor 
(1991). A direct comparison is difficult, since the Taguchi program is focused on the design 
of a new product or process, while the aim of Statistical Engineering is improvement in an 
existing process. Note, however, that two of the variation reduction approaches (desensitiza- 
tion and robustness—see chapters 16 and 19) use ideas from Taguchi’s program. 

Because the algorithms discussed here have a common basis, we believe that the 
choice of algorithm is far less important to success than is the organizational discipline 
required for routine implementation. The tools and strategies from one algorithm can, and 
in fact should, be incorporated into another as appropriate. 
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Obtaining Process Knowledge 
Empirically 

 

S5.1 ATTRIBUTES 

In applying QPDAC to plan investigations, we specify many numerical attributes other than 
averages, standard deviations, and proportions. Here we give some examples that can apply 
to the target and study population or the corresponding sample. 

 
Stratification 

The first complication is stratification. For example, we may have a process with distinct 
streams, such as two suppliers of the same component, three production teams (one for each 
shift), four different parallel operations within a machining operation, and so on. In the truck 
alignment process described in Chapter 1, there are four gages operating in parallel to measure 
caster and other alignment characteristics (see Figure S5.1). 

We can stratify the output by gage and define attributes such as the average and standard 
deviation for each gage. If the averages are different, we can reduce the overall standard 
deviation by improving the calibration process for the gages. If the standard deviation within 
one gage is much larger than within the others, we can look within that gage to understand 
why it is behaving differently. We can estimate these attributes by applying QPDAC. 
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Figure S5.1 Truck alignment process. 
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We exploit the idea of stratification and specifying attributes by strata to generate clues 
about the dominant cause. See chapters 9 and 10. 

 
Combined Attributes 

Sometimes we express a question in terms of an attribute defined as a combination of two 
or more attributes. For example, in the supplement to Chapter 2, we defined the process 
performance measure Ppk as 

distance from the process average to the closest specification limit 
Ppk   3*stdev 

 

Ppk is a function of the population average and standard deviation. Another example is the 
capability index Cpk, where 

 
 

Cpk   
distance from the process average to the closest specification limit 

3* within subgroup stdev 
 

Cpk is a function of the average and a different attribute, the within-subgroup standard deviation. 
To define within-subgroup standard deviation, we specify what we mean by a subgroup. 

We can choose as we please; often we define a subgroup as five consecutive parts from the 
process or all parts within a specified (short) period of time. In each case, we are stratifying 
the population of units into a large number of groups with no overlap. If all of the subgroups 
have the same size, then we define the within-subgroup standard deviation as 

 

( )2 2
1 2within subgroup stdev , ,...average stdev stdev=  

 
where stdev1,stdev2,... are the standard deviations within subgroups 1, 2 ..., and so on. We 
average the squares and then take the square root to match the model behavior as discussed 
in Chapter 2. 

We trust that you have noticed that Ppk and Cpk are different attributes because their 
denominators are not the same. Hence questions that we ask in terms of Ppk and Cpk are also 
different. We can see the connection between the denominators by noting the following 
result that we demonstrated in the supplement to Chapter 2. 

 

stdev ≈ 
 

Here we have stratified the population into subgroups. We have produced a very gen- 
eral formula, because the definition of a subgroup was up to us. We interpret the result by 
noting that the overall standard deviation is made up of a within-subgroup and a subgroup- 
to-subgroup component. In looking for a dominant cause of variation, we use this interpre- 
tation to eliminate from consideration causes associated with small components of the 
overall variation. 

(within subgroup stdev)2  stdev2 (subgroup 
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Note that the overall standard deviation and the within-subgroup standard deviation are 

almost equal when the standard deviation of the subgroup averages is small, that is, when 
all of the averages are about the same. In other words, the two attributes Ppk and Cpk will be 
almost the same when most of the variation in process output occurs within the subgroups, 
not subgroup to subgroup. 

 
Scatter Plots and Fitted Lines 

There is a set of useful numerical attributes associated with scatter plots. Suppose, in a popu- 
lation of units, we have an output characteristic y and an input characteristic x associated with 
each part. We do not expect y to be a simple function of x because there are many other inputs 
to the process. However, as shown in Figure S5.2, we often see a strong relationship in the 
scatter plot. In such cases, we can add a fitted line to describe the relationship numerically. 

We fit the line using least squares, a procedure that minimizes the sum of squares of 
the vertical distances between the plotted points and the fitted line. Algebraically, if y = a + 
bx represents any straight line, then we select the fitted line to minimize the quantity 

 

Σ(yi − a − bxi ) 
 

where the sum is overall units in the population. We denote the fitted line in the population 
by the equation 

 

y = α + βx 
 

The Greek letters α (alpha) and β (beta) are numerical attributes of the population. The 
slope β describes how much, on average, y will increase for a unit increase in x. Given a 
sample of parts from the study population, we estimate these attributes with the correspon- 
ding sample quantities. See Appendix E for more details on how to fit the line and create 
plots like Figure S5.2 for the data in the sample. 
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Figure S5.2 Scatter plot and fitted line. 
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Looking at Figure S5.2, we see that if x were held constant, the variation in y would be 
much smaller than when x is allowed to vary. For example, if x is held near 10, then from 
the scatterplot, we see that y varies from about 25 to 40. Overall, y varies from about 10 to 
60. We use this idea to quantify the contribution of a single cause to the overall variation. 

We can partition the standard deviation of y into two components: 

stdev(y)  

The second component under the square root sign describes the variation that would 
remain if x were held fixed. We can picture this attribute on the scatterplot as the variation 
around the fitted line. The first component describes the contribution of the input x to the 
variation in the output y. If x is a dominant cause of variation in the output, stdev(rest) is 
small compared to stdev(y). 

Given a sample from the population, we can estimate stdev(y) and the component contri- 
butions using MINITAB. Then we can decide if x is a major contributor to the variation in y. 

 
S5.2 SAMPLING PROTOCOLS AND THEIR EFFECTS 

In selecting the sample, the goal is to control: 

• Sample error by matching the attributes of interest in the sample and the study 
population 

• Sampling cost 

There are some general considerations. First, to avoid sample error, we make sure that the sam- 
pling protocol will select units broadly across the study population. For example, if we define 
the study population to be one week’s production, we should not entertain a sampling protocol 
that is limited to a single day. Second, if we choose a complex sampling scheme, we are likely 
to have added cost and a greater opportunity for the protocol to go wrong in the Data step.Third, 
we will generally incur a larger cost for larger samples, everything else being equal. 

We make wide use of systematic sampling in which we deliberately select the sample 
over time and location. For example, we may select the next 300 units to assess process 
capability or we may select five consecutive pieces at the start of every two hours of produc- 
tion in a multivari investigation (see Chapter 11). Similarly, we may ensure that the sample 
has an equal number of parts from all process streams when assessing process performance. 
In assessing a measurement system, we select the parts to be measured repeatedly to cover 
the range of normal output values. We specifically sample both large and small parts. Sys- 
tematic sampling has the major advantage that it is easy to organize and execute. 

Random sampling is the most famous sampling protocol but has relatively few uses in 
process improvement. It is difficult and costly to implement. Suppose we want a sample of 
100 parts selected at random from the study population, the week’s production of 10,000 
parts. We suppose that the units all have a unique identification code; if they do not, then we 
must assign such a code, which can be a daunting task. The first step is to associate each of 
the identification codes with a digit between 1 and 10,000. Then, using MINITAB, we gener- 
ate a random sample of 100 values from the possible 10,000 numbers without replacement. 

β2 stdev(x)2  + stdev(rest)2
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This is the easy part. Now we must find the parts corresponding to the sampled identifica- 
tion codes. This can be difficult if the process is complex and parts do not appear in the 
expected order. Finding the sampled units can take a long time and be expensive. 

We once consulted on a project (by telephone only) where we naively recommended 
selecting a random sample of 50 water heaters from a lot of 2200 heaters. Each heater had 
a unique serial number. The heaters were stored in boxes in a warehouse. We provided a list 
of 50 serial numbers corresponding to a random sample of heaters. The sampling protocol 
fell apart immediately because it was not possible to locate the serial number without open- 
ing the box, and furthermore, it was very difficult to get at certain heaters due to the method 
of storage. In the end, a convenience sample was selected from locations spread throughout 
the warehouse. Note that when we discuss experimental plans in more detail, we will use 
random assignment extensively. This is a different use of randomization not to be confused 
with random sampling. 

Sample size is a major issue. The most frequent question asked of a statistical consultant 
is, “How large a sample should I use?” The answer, like that to all statistical questions, is, 
“It depends!” For a given protocol, the larger the sample, the greater the chance of small 
sample error. However, even with a very large sample, we may be unlucky and have sub- 
stantial sample error. To determine sample size, the first consideration is how the sampling 
fits into the rest of QPDAC. For instance, if there are likely to be large study and measure- 
ment errors, it makes little sense to try to get very small sample error. Second, there are cost 
and time constraints that often outweigh any consideration of sample error. We can often 
answer the sample size question based on what the team can afford. 

There are some formal procedures that can be used to determine sample sizes if we 
have random sampling (or another sampling protocol where we pretend that the sampling 
will be random) and simple attributes in the Question step. We do not discuss these for- 
mally here. See Odeh and Fox (1975), Nelson (1985), and Neter et al. (1996). Also 
MINITAB has a “power and sample size” function. To understand how these methods work, 
consider the following example. 

We were once asked how large a sample would be needed to determine if there were 
any defective rails in a suspect lot of 5700 rails. The defect was a vertical crack in the head 
of the rail that might cause derailment of a train. To detect the defect, the railway used a 
destructive test. The management wanted to be 99% confident that there were no defective 
rails in the lot. To answer the question, from a statistical perspective, the situation requir- 
ing the largest sample size would occur if there were exactly one defective rail in the lot. 
Suppose this was the case, that is, that there was one defective in the lot and we plan to 
choose a sample of n rails at random. We want to be 99% sure that we find the defective 
rail. Simple calculations show that we need to sample 99% of the rails. This was com- 
pletely infeasible; sampling could not provide the information required in this case. The 
only feasible solutions were to scrap the lot of rails or to accept the risk of an accident. 

In many QPDAC applications, we will use data that are already available; that is, data 
that have been collected for some other purpose. For example, we may examine scrap 
records or measurements taken as part of the process control plan. These data can be helpful 
but it is wise to think about how they were collected. Are we likely to be misled because of 
large study or sample error? 
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In summary, we most often recommend systematic sampling to cover the study popu- 

lation. Systematic sampling is relatively easy to implement. Choose a sample size as large 
as you can afford remembering that there are likely to be more investigations before the 
problem solving is complete. 

 
S5.3 STUDY, SAMPLE, AND MEASUREMENT ERRORS 

To help understand Figure 5.1 more fully, Deming (1986) distinguishes between descriptive, 
enumerative, and analytic investigations (see also Liberatore, 2001). In a descriptive inves- 
tigation, the target population, the study population, and the sample are all the same. The 
only potential error is due to the measurement system. In an enumerative investigation, the 
target and study populations are the same. In this case, study error is not a concern. In an 
analytic investigation, the target population, the study population, and the sample are all 
different, so we must consider all types of error. 

Deming used these distinctions to point out that investigations of the different types are 
subject to different types of uncertainty due to the possibility of the various types of errors. 
In our context, we are most interested in analytic investigations since the target population 
usually extends into the future. In analytic investigations, we must face concerns about pos- 
sible study error and the trade-off with time and cost considerations. 

For chronic problems involving production processes, the study process is often a time- 
limited version of the target process. However, in some circumstances, the study population 
may be generated from a different process altogether. For instance, we may draw con- 
clusions about a proposed production process from empirical investigations of a pilot 
process. This difference increases the potential for study error since the pilot process may 
not be representative (in terms of the attribute of interest) of the production process. 

We can use formal statistical methods (see Box et al., 1978) to quantify sample and 
measurement error. For a familiar example, think about the statement at the bottom of most 
public opinion polls: 

A survey of this size is accurate to within 3 percentage points 19 times out of 20. 

This is a statement about the likely size of sample and measurement error. For analytic 
investigations, Deming’s point is that such a statement does not apply to study error. Our 
message is that we can control study error only by careful specification of the study and target 
populations. 

 
S5.4 OUTLIERS 

An outlier is an unexpectedly large or small value. The occurrence of outliers in any empirical 
investigation can have a large effect on the conclusions. We try to identify outliers and con- 
trol their impact. 

An outlier can have a large influence on the estimate of the standard deviation, one of 
the attributes we use most often. We use an artificial example to illustrate. Suppose we take 
a sample of 100 parts from a process and measure an output characteristic (denoted y). We 
present the data summary from MINITAB and the process histogram in Figure S5.3. 
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Figure S5.3 Histogram of 100 output values. 
 
 

Descriptive Statistics: y  
Variable N Mean Median TrMean StDev SE Mean 
y 100 5.081 5.000 5.049 1.059 0.106 

 

Variable Minimum Maximum Q1 Q3 
y 2.500 11.400 4.425 5.600 

 

The first value in the data set is 11.4, an apparent outlier. We can study the effect of the 
outlier on the sample standard deviation by replacing 11.4 by a number of values between 
1 and 20 (denoted x) and then recalculating the sample attribute. We plot the results in 
Figure S5.4. 
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Figure S5.4 Effect of changing a single value on the sample standard deviation. 
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We see that the standard deviation is very sensitive to changes in a single value in a sam- 
ple of size 100. If the first value in the sample had been 5 (close to the average) rather than 
11.4, the standard deviation would have been reduced from 1.06 to 0.85, a 20% reduction. 

What should we do if we find an outlier? We first look at the data collection procedure 
to ensure that no blunder occurred, such as incorrectly entering the data into the spread- 
sheet. If a blunder occurred and it cannot be easily corrected, we have a number of options. 
We can remove the observation from the analysis. This is the preferred approach for inves- 
tigations such as estimating the problem baseline (see Chapter 6) where there are many 
observations under similar conditions. For other investigations such as designed experi- 
ments, where we make relatively few measurements under a number of combinations of 
inputs, we can repeat the observation or replace the outlier by an estimate of its value made 
from the remaining observations. 

If we cannot attribute the outlier to a blunder, we have a much more difficult decision. 
First, if eliminating or changing the outlier has no effect on conclusions then we may ignore 
its presence. If the outlier does have an effect, the key question is whether the dominant 
cause of the outlier is the same as the cause of the problem we are trying to address. This 
question is unfortunately not answerable without considerable process knowledge. It is pos- 
sible that the outlier comes from a different, perhaps rare, failure mechanism that we are not 
trying to address. On the other hand, the outlier could be an extreme example of the 
action of the dominant cause of the current problem. In the former case, the presence of the 
outlier will make finding the cause and solving the problem more difficult, since the outlier 
will cloud the effects we are looking for. In the latter case, the outlier may provide a great 
deal of useful process knowledge. Consideration of outliers is especially critical when using 
the idea of leverage, as defined in Chapter 9. 
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S6.1 CONFIDENCE INTERVALS FOR THE PROCESS 
BASELINE ATTRIBUTES 

We can use confidence intervals to assess uncertainty due to sampling and measurement 
error. A confidence interval is a range of plausible values for an attribute in the study pop- 
ulation. The interval is based on the estimate of the attribute from the measured values in 
the sample. By default, we use 95% confidence intervals so that we are confident that the 
unknown attribute falls within the given interval. 

For example, consider the V6 piston diameter data discussed in Chapter 5. The team 
collected diameter data for 469 pistons over a one-week period. The data are found in the 
file V6 piston diameter baseline. The attribute of interest is the standard deviation in the target 
population. Using MINITAB we produced the following numerical summaries: 

 
Variable N Mean Median TrMean StDev SE Mean 
diameter 469 590.85 590.90 590.83 3.32 0.15 

 

Variable Minimum Maximum Q1 Q3 
diameter 581.50 602.80 588.40 593.05 

 

The estimated standard deviation is 3.32 microns. We can get an approximate 95% 
confidence interval for the study population standard deviation of the form 

 
(c1* estimated standard deviation, c2* estimated standard deviation) 

where c1 and c2 are found in Table S6.1. The given constants can be derived using a Gaussian 
assumption (as discussed in Chapter 2) to model the distribution of output values. The 
degrees of freedom are related to the sample size. Technically, in the previous calculation, 
the degrees of freedom are one less than the sample size. In general, for large sample sizes 
(greater than 30), you can replace the degrees of freedom by the sample size. 
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In the V6 piston diameter example, the confidence interval for the study population 
standard deviation is (3.08, 3.59) microns. We can be confident that the standard deviation 
in the study population is in this range. Even though we used a large sample size, we can 
only be confident that the attribute is within about ±7% of the estimate. In general, from 
Table S6.1 we note that the process standard deviation is poorly estimated when the sam- 
ple size is small. 

 
 

 

Table S6.1   Constants for confidence 
intervals for standard deviation. 

 

Degrees of freedom c1 c2 

10 0.69 1.75 

20 0.77 1.44 

30 0.80 1.34 

40 0.82 1.28 

50 0.84 1.24 

60 0.85 1.22 

80 0.87 1.18 

100 0.88 1.16 

200 0.91 1.11 

300 0.93 1.09 

500 0.94 1.07 

1000 0.96 1.05 

 
We use the estimated standard deviation as a measure of baseline performance. In the 

example, if we change the process and re-estimate the standard deviation, we hope to see 
an estimate substantially less than 3.08 (the lower endpoint of the confidence interval) in 
order to be confident that the change has produced a positive benefit. 

We can use the confidence interval to assess the likely size of sampling and measure- 
ment errors. The range of values for the attribute captures these uncertainties. However, the 
confidence interval tells us nothing about study error. 

Sometimes we may want a confidence interval for an average in the study population. 
In the V6 piston diameter example, MINITAB has done most of the work. The estimated 
attribute is the sample average 590.85. To derive a confidence interval for the average, we 
look for the SE (denotes standard error) of the mean. In the example, the standard error of 
the estimate for the average (denoted “SE Mean” in the MINITAB results) is 0.15. For large 
sample sizes (sample sizes greater than 30), the 95% confidence interval is (approximately) 
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sample average ± 2* (standard error of the average) 
 

or, in this case, 590.85 ± 0.30. In other words, we can be confident that the study population 
average diameter falls in the range (590.55, 591.15) microns. 

For many other attributes, the form of the confidence interval is the same as for the 
average, that is, 

 
estimated attribute ± 2* (standard error of the estimate) 

 
We can often find both the estimated attribute and the standard error of the estimate in the 
MINITAB summary. 

For estimating a small proportion, such as the proportion defective, we get a rough idea 
of the precision of the estimate from a confidence interval of the form 

 

( ) ( )estimated proportion  2 estimated proportion sample size  ±

 
This formula is rough because we do not expect the underlying assumptions to hold. However, 
we use the formula to give some guidance about sample size. For example, if we expect the 
baseline defect rate to be around 0.01, then with a sample size of 1000, the confidence 
interval for the proportion defective is about 0.010 ± 0.006. We see there is large relative 
error in the estimate due to the sampling error. 

We use confidence intervals when it seems necessary to quantify the uncertainty in 
estimated attributes. We often ignore this uncertainty, especially in the searching for the 
dominant cause. There are many reference books that deal with confidence intervals and 
other formal statistical procedures. See, for example, Box, Hunter, and Hunter (1978). 

 

S6.2 PROCESS STABILITY AND QUANTIFYING BASELINE 
PERFORMANCE 

There is a myth that we cannot improve process performance with Statistical Engineering 
methods until we have established a stable process in the sense of Statistical Process Control 
(SPC). We refer to this property as stability. For example, see section 6 of the AIAG 
QS-9000 SPC Manual (1995b). 

It is true (see the discussion in Chapter 4) that we need a controlled process before it 
makes sense to apply Statistical Engineering. The main reason is that huge improvements 
can be made cheaply by ensuring that standard practices and a control plan are followed, 
that routine maintenance and housekeeping are carried out, that process personnel are 
trained, and so forth. We do not need to use the sledgehammer of Statistical Engineering to 
achieve the large reduction in variation that comes from fixing obvious problems. 

What role does stability play in quantifying baseline performance? Consider, for example, 
the truck pull variation reduction problem discussed in Chapter 6. The study population 
was a two-month period and the sample was all trucks produced in that period. Here there 
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is no sample error. The baseline performance measure was the pull standard deviation calcu- 
lated over the two-month period. We assumed that this two-month period was long enough so 
that the standard deviation over this study population would describe how the process would 
perform into the future if no changes were made. In the language of QPDAC, we assumed 
that there was little study error. 

For the purpose of discussion, suppose that a control chart had been in place at the four 
gages at the start of the project. There are many sampling protocols that could be used to 
generate control charts. The process may be stable using some of these protocols and unstable 
using others. In other words, stability is not solely a property of the process; it also depends 
on the sampling and charting procedure used. Suppose that in our example, the chart was 
base–d on pull measured on five consecutive trucks, once per shift. In Figure S6.1, we show 
the X chart based on the first five trucks produced after 2:00 A.M., 10:00 A.M., and 4:00 P.M. 
sampled from the data set truck pull baseline for all days. 

The process is unstable with respect to this charting procedure. That is, there are 
causes (varying inputs) that change from shift to shift within the two-month period that 
produce the systematic patterns seen on the chart. The effects of these causes contribute to 
the overall standard deviation. Our assumption about study error is that in the future, the 
control chart would show similar patterns of instability. This is an assumption and the control 
chart here provides no help in deciding if the assumption is reasonable or not. If we were 
concerned with the assumption and if the data were available, we could examine a sequence 
of two-month periods in the past to see if such a time frame captures most of the process 
variation. 

In summary, the selection of a study population with a time frame long enough to well 
represent the future is a key issue in establishing a baseline. Stability within the selected 
study population is not the issue. We emphasize the word within because the baseline standard 
deviation describes the whole two-month period. 

Whether the process is stable or not, we may use control chart data to quantify the 
baseline and provide clues about the dominant cause. 
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S7.1 ASSESSING A BINARY MEASUREMENT SYSTEM 

With a binary measurement system, there are two outcomes we call pass and fail. We suppose 
here that the characteristic being measured is also binary, either good or bad. Many binary 
measurement systems first measure one or more continuous characteristics and then classify 
the part as pass or fail. If we can measure these underlying continuous characteristics, we can 
assess the properties of the measurement system (before discretization) using the plans 
proposed in Chapter 7. 

Problems with a binary output may be specified in terms of excess scrap and rework or 
in terms of customer complaints about receiving bad parts. In the first case, the baseline 
performance measure is P(pass), the proportion of parts passed by the measurement sys- 
tem. In the second case, we use P(good | pass), the proportion of parts sent to the customer 
that are good. Note the | in the proportion indicates a conditional proportion—in this case, 
the proportion of good parts among all those passed by the measurement system. We can 
write this conditional proportion as 

 
 

 ( ) ( )
( )

 and passP good
P good pass

P pass
=  (S7.1) 

 

From the baseline investigation we have a good estimate of P(pass). This is analogous 
to obtaining an estimate of stdev(total) from the baseline in a problem with a continuous 
output. The key formula relating the properties of the measurement system and the manu- 
facturing process is 

 
P(pass) = P(pass good)P(good) + P(pass bad)P(bad) (S7.2) 

 
The proportions P(good) and P(bad) = 1 – P(good) are properties of the manufacturing 
process. The misclassification rates P(fail | good) = 1 – P(pass | good) and P(pass | bad) are 
properties of the measurement system. For a binary output, Equation (S7.2) corresponds to 
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the partition of the overall standard deviation into components due to the measurement system 
and the manufacturing process for a continuous output. 

We can derive Equation (S7.2) by noting that 
 

( ) ( )
( )

 and P good pass
P pass good

P good
=  or ( ) ( ) ( ) & P good pass P pass good P good=  

 

and 

( ) ( )
( )
 and P bad pass

P pass bad
P bad

=  or ( ) ( ) ( ) & P bad pass P pass bad P bad=  

 
We finally note that the proportion of passed parts is 

 
P( pass) P( pass and good) P( pass and bad) 

P passP( pass good)P(good) P( pass bad)P(bad) 
 

If instead the baseline performance is specified by P(good pass), we can rewrite 
Equation (S7.1) as 

 

( ) ( ) ( )
( )

P pass good P good
P good pass

P pass
=  

 
to separate the effects of the measurement system from those of the rest of the process. 

In summary, to assess the binary measurement system we estimate the misclassification 
rates P(pass bad) and P(fail good), attributes of the measurement system in the 
population of all future measurements. If these proportions are too high, then the 
measurement system is not adequate and must be improved before proceeding to the next 
stage of the Statistical Engineering algorithm. 

We illustrate these ideas using an example in which credit cards were classified pass or 
fail by an automated visual inspection system. The aim was to find visual defects such as 
missing parts of the intended design, surface scratches, bleeding of the colors, fuzzy letters 
and numbers, and so on. The measurement system used a digital image of the front of each 
card to calculate hundreds of summary measures based on comparing the picture to a tem- 
plate of the ideal card. If none of the summary measures fell outside the prespecified ranges, 
the measurement system passed the card. In the baseline investigation, the team monitored 
the measurement system for more than one week and found an 89.5% pass rate. About 30,000 
cards were measured each hour. The goal was to reduce the proportion of bad cards being 
shipped to the customer P(pass bad) without substantially decreasing the pass rate 
P(pass). 



Checking the Measurement System CD–207 
 

 
Estimating the Misclassification Rates 

To estimate the misclassification rates, we must determine whether a number of parts are 
good or bad. This corresponds directly to the need to know true values in the determination 
of bias in a continuous measurement system. We illustrate two different plans to estimate 
the misclassification rates using the credit card example. 

 
 

Plan 1 

We start with equal-sized groups of passed and failed parts. We select each group over a 
period of time and over a range of conditions so that they represent the long-run popula- 
tions of passed and failed parts. Then we determine the true state (good or bad) of each part. 

In the credit card example, the team selected 40 passed and failed cards per day for five 
days. Then human inspectors classified each card as good or bad. The data are summarized 

in the following table. 
 
 

 Good Bad Total 
Pass 195 5 200 
Fail 16 184 200 

 

From these data, we estimate P(good pass) = 195 / 200 = 0.975 and P(good fail) 
= 16 / 200 = 0.080. 

With the a derivation used to obtain Equation (S7.2), we can express the proportion of 
good parts as 

 
 

P(good) = P(good pass)P(pass) + P(good fail)P(fail) 
 
 

Substituting the estimates for P(good pass) and P(good fail) and the overall 
pass rate 0.895, we estimate the proportion of good cards in the population as 

 

P(good) = 0.975 ⋅ 0.895 + 0.080 ⋅ 0.105 = 0.881 
 

and the first misclassification rate by 
 
 

P( fail | good ) = 1 − P( pass | good ) = 1 − 
P(good pass)P( 

pass) P(good ) 

 
= 1 − 

0.975 ⋅ 0.895 
 

0.881 

 
0.010 

Similarly, the estimate of the second misclassification rate is 
 
 

( ) ( ) ( )
( )

0.25*0.895 0.188
1 0.881

P bad pass P pass
P pass bad

P bad
= = =

−
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The team decided that the measurement system needed improvement because the 
estimate for P(pass bad) was large. If the team could reduce this misclassification 
rate, the proportion of bad cards shipped to the customer would decrease from 0.025. 

 
 

Plan 2 

Here we start with equal-sized groups of good and bad parts. We select each group over a 
period of time and over a range of conditions so that they represent the long-run populations 
of good and bad parts. Using the credit card example, the operators examined cards until 
they had 200 good cards and 200 bad cards. Next, the cards were classified by the measure- 
ment system with the following results. 

 
 

 Pass Fail Total 
Good 190 10 200 
Bad 8 192 200 

 
From these data, we can directly estimate the misclassification rates as P(fail 

good) = 10/200 = 0.05 and P(pass bad) = 8/200 = 0.04. Since we also know 
P(pass) = 0.895, we can estimate P(good) using Equation (S7.2): 

 

P(pass) = P(pass good)P(good) + P(pass bad)P(bad) 
 

Substituting the estimates, we have 0.895 = 0.95P(good) + 0.04(1 –P(good)), and solving, 
we find 

 

P(good) = 
0.895 − 0.04 

= 0.940 
0.95 − 0.04 

 

Comments 

The second plan gives direct estimates of the misclassification rates and an indirect estimate 
of P ( bad pass), whereas the first plan provides indirect estimates of the 
misclassification rates and direct estimates of P ( bad pass). Which plan is preferred 
depends on costs and the way the baseline is specified. The second plan will not be 
feasible in many cases because it will be difficult to get representative samples of good 
and bad parts. 

If we decide that the misclassification rates are too high, we can investigate families 
of causes such as operator-to-operator or time-to-time by repeating the investigation over 
different time periods or with different operators. 
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The estimates produced by these plans will be imprecise unless we have large samples. 

In the first plan using the credit card example, we can be confident that the estimate 
P ( pass | bad ) = 0.188 is within about ±0.06 of the actual misclassification rate. To increase 
the precision of the estimate, we need to determine the characteristic (good or bad) of more 
than 200 passing and failing cards. 

See Boyles (2001) and AIAG (1995a) for more details on alternative ways of assessing 
variation due to binary measurement systems. The AIAG method is not feasible in the credit 
card example because it assumes a measurable continuous output has been discretized to 
give the binary output. 

 
 
S7.2 ASSESSING A DESTRUCTIVE MEASUREMENT SYSTEM 

 
Here we discuss the planning and analysis of an investigation to assess a destructive meas- 
urement system for a continuous characteristic. A measurement system is destructive if we 
change the true value of the characteristic by making the measurement. Tensile strength is a 
good example. We cannot make repeated measurements on the same part when the system 
is destructive. 

To assess measurement variation, we select parts that we hope have identical or very 
similar characteristic values. If we have many similar units, we recommend the plan and 
analysis in sections 7.2 and 7.3. If there are only pairs of similar units, we can use an inves- 
tigation like an Isoplot (see Section S7.4). 

The following example of assessing a destructive measurement system for the tensile 
strength of tin-plated steel is motivated by Spiers (1989). In the baseline investigation, the 
team found that the overall variation in strength was 2.5 KSI (thousands of pounds per 
square inch) relative to the tolerance ±6.0 KSI measured from nominal. 

The next step was to check the measurement system. To determine tensile strength, the 
operator: 

1. Cut a standard sized sample from a sheet of steel 

2. Calculated the cross sectional area of the sample with a micrometer 

3. Pulled the sample apart in a tensometer 

The tensile strength is the ratio of the maximum load to the cross-sectional area. 
In the measurement investigation, 30 standard-sized pieces were cut from three differ- 

ent sheets of steel, parallel to the rolling direction and one-quarter distance from the edge 
of the sheet to eliminate variation in thickness and tensile strength due to edge or crown 
effects. The sheets were chosen to cover the full extent of variation in strength seen in the 
baseline investigation. The 30 pieces from each sheet were then randomly divided into 
three groups of 10. The three appraisers each measured the tensile strength of all 30 
pieces (10 pieces from each sheet). We give the data in the file tin plate strength 
measurement. 

In the analysis, we assume that all the pieces cut from the same sheet have the same 
tensile strength. This is analogous to measuring the same part a number of times in the 



CD–210 Chapter Seven Supplement 
 

 
 

95 
 
 
 
 
 
 
 

85 
 
 
 
 

75 
 

1 2 3 

Sheet 

 
 

Figure S7.1 Plot of tensile strength by sheet. 
 

nondestructive measurement case. Figure S7.1 shows the measured tensile strength versus 
the sheet number. A numerical summary is: 

 
Descriptive Statistics: tensile strength by sheet 

 

Variable sheet N Mean Median TrMean StDev 
tensile 1 30 80.620 80.900 80.762 1.500 

 2 30 87.177 87.450 87.354 1.413 
 3 30 93.477 93.550 93.531 1.406 

 

Variable sheet SE Mean Minimum Maximum Q1 Q3 
tensile 1 0.274 76.100 83.200 80.000 81.600 

 2 0.258 82.600 88.800 86.300 88.300 
 3 0.257 90.600 95.800 92.425 94.700 

 

From the MINITAB results, we estimate stdev(due to measurement) as 
 

( )2 2 21.5 1.413 1.406 3 1.44+ + =  
 

Using the estimate stdev (total) of 2.50, obtained from the baseline investigation and Equa- 
tion (7.2), we estimate 

 
stdev(process)  2.04 

 

so the estimated discrimination ratio D is 1.42. 
We need to be careful in the interpretation of D, because of the destructive nature of the 

measurement system. The term stdev(due to measurement) includes two components, one 
due to the measurement variation and one from the variation in true values of the samples 
from each sheet. If the ratio is large—that is, D > 3—we can conclude that the measurement 
system is acceptable because the combined effect of the two components is small. If the 

stdev(total)2  + stdev(due to measurement)2
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Figure S7.2   Tensile strength minus sheet average by operator. 
 

ratio is small—that is, D < 3—we cannot be sure if the fault lies in the measurement sys- 
tem or if there is large variation within the samples taken from the same sheet. 

In the example, the team concluded that they should improve the measurement system 
before continuing further with the Statistical Engineering algorithm. In further analysis of the 
measurement results, as shown in Figure S7.2, the team found that some of the measurement 
variation was due to the differences between the operators, with operator three exhibiting 
more variation than the other two operators. 

To estimate measurement bias with a destructive measurement system, it is necessary 
to use parts with known characteristic value. These standard parts are difficult to obtain 
unless there is some other (better) nondestructive measurement system. 

 
S7.3 REPEATABILITY, REPRODUCIBILITY, LINEARITY, 

AND STABILITY 

For much of the automotive industry, as part of QS-9000 (Automotive Industry Action Group 
[AIAG], 1998), suppliers are required to periodically assess measurement systems used for 
process control and product inspection. The suppliers routinely consider repeatability and 
reproducibility. Less frequently, they examine linearity and stability. Here we define these 
attibutes of the measurement system and relate them to measurement variation and bias as 
described in Section 7.1. Other than stability (which we incorporate into our definition of 
measurement variation and bias), we feel these additional attributes are only useful if we need 
to improve a measurement system. 

From the Automotive Industry Action Group (AIAG) Measurement Systems Analysis 
manual (1995, pp. 17–18), we quote the following definitions: 

Repeatability: the variation in measurements obtained with one measurement 
instrument when used several times by one appraiser while measuring the identical 
characteristic on the same part. 

Reproducibility: the variation in the average of measurements made by different 
appraisers using the same measuring instruments when measuring identical 
characteristics on the same part. 
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Stability: the total variation in the measurements obtained with a measurement 
system on the same master or part when measuring a single characteristic over an 
extended time period. 

Linearity: the difference in bias values through the expected operating range of 
the gage. 

There is some ambiguity in these definitions that is evident if we try to create the corresponding 
attributes. The target population is all measurements to be made in the future with the measure- 
ment system over a wide range of parts, time, operators, and environmental conditions. 

The output is the measurement error for each act of measuring. We assume that the 
measurement system has a single gage. 

Repeatability is the variation in the measurement errors when a single operator measures 
the same part. The definition makes no mention of which operator, which part, over what 
time frame, and under what conditions. One way to make the definition more precise is to 
consider repeatability a short-term measure of the variation in the measurement errors when 
the operator, part, and conditions are held fixed. That is, we think of repeatability as the aver- 
age over time, operators, parts, and conditions of the standard deviation of the measurement 
errors in the consecutive measurement of the same part. 

Reproducibility is variation from operator to operator. We can specify reproducibility 
more precisely as the variation of bias from operator to operator in the system. Bias for a 
particular operator is the average measurement error for that operator over a wide range of 
times, parts, and environmental conditions. We think of reproducibility as the standard 
deviation of the operator biases. 

Stability as defined by AIAG is the variation in the measurement errors if the same part is 
measured repeatedly over a long period. To make this notion precise, we have to average these 
standard deviations over different parts, operators, and environmental conditions. Stability is to 
the long term what repeatability is to the short term. Stability is a badly chosen name, since it 
is not connected to the Statistical Process Control (SPC) use of the word as in a stable process. 

Linearity is a measure of the variation in bias over part size. More precisely, for each 
part, we define the bias as the average measurement error over operators, time, and envi- 
ronmental conditions. Linearity is the standard deviation over all parts of these biases. It is 
not clear why the definition of linearity does not include possible changes in measurement 

variation over part size. 
The four attributes are a strange collection. Taken together, we cannot use them to estimate 

the overall variation in the measurement system as defined in Chapter 7. Each attribute is one 
component of the overall variation, but there are many other components. If there is no time, 
part, or environmental component to the overall variation of the measurement errors, then we 
can combine repeatability and reproducibility to estimate the overall variation of the system. 

We can assess these attributes (except linearity as defined earlier in terms of bias) using the 
plan for assessing the overall variation described in Section 7.2. Consider the camshaft example 
in which there were three parts, three operators, and two weeks. On one day in the week, each 
operator measured every part three times. We assess repeatability by the average variation 
within each part, operator, and week and reproducibility by the variation in the operator aver- 
ages over all parts, weeks, and repeated measurements. We assess stability graphically by com- 
paring the within-week variation over the two weeks. 

To estimate repeatability we use a one-way ANOVA model. See Appendix D for further 
discussion of ANOVA models. The relevant MINITAB ANOVA results are: 
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One-way ANOVA: diameter versus repeat 

 

Analysis of Variance for diameter  
Source DF SS MS F P 
repeat 17   5024.511 295.559 841.83 0.000 
Error 36 12.639 0.351  
Total 53 5037.151   

    Individual 95% CIs For Mean 
    Based on Pooled StDev 
Level N Mean StDev ------+---------+---------+---------+ 

1 3 –11.658 0.449 *) 
2 3 1.289 0.150 (* 
3 3 11.940 1.020 (*) 
4 3 –10.886 0.561 *) 
5 3 0.024 0.242 (*) 
6 3 12.581 0.792 (*) 
7 3 –10.778 0.876 (* 
8 3 1.533 0.872 (*) 
9 3 13.058 0.141 (*) 

10 3 –10.566 0.547 (*) 
11 3 1.124 1.156 *) 
12 3 12.494 0.245 (* 
13 3 –11.219 0.251 (*) 
14 3 1.358 0.410 (*) 
15 3 12.196 0.571 (*) 
16 3 –10.300 0.274 (*) 
17 3 1.895 0.150 *) 
18 3 13.843 0.397 (*) 

------+---------+---------+---------+ 
Pooled StDev = 0.593 -8.0 0.0 8.0 16.0 

 
 

We estimate the repeatability as 0.593. Since the estimate of the overall measurement stan- 
dard deviation was found earlier to be 0.756, the repeatability is a large component. 

We give the operator averages in the following MINITAB summary: 
 
 

Descriptive Statistics: diameter by operator 
 

Variable operator N Mean Median TrMean StDev 
diameter 1 18 0.76 1.20 0.81 9.84 

 2 18 0.67 0.65 0.64 9.86 
 3 18 1.55 1.80 1.58 10.10 

Variable operator SE Mean Minimum Maximum Q1 Q3 
diameter 1 2.32 –12.20 12.90 –10.80 12.05 

 2 2.32 –11.50 13.30 –10.95 11.85 
 3 2.38 –11.50 14.10 –10.07 13.13 
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Figure S7.3 Deviation from part average versus week. 
 

The standard deviation of the operator averages is 0.484. To estimate reproducibility, we 
calculate 

 
 

also a large component of the overall variation. 

0.463 

We can assess stability by plotting the deviations from part averages versus week as in 
Figure S7.3. 

If we know the true values of the parts being measured, as in Section 7.3, we can assess 
linearity by plotting the average measurement error (estimated bias) for each part, where the 
average is calculated over all days, operators, and repeats, versus the part size. 

In summary, the repeatability, reproducibility, stability, and linearity of a measurement 
system do not by themselves play an important role in the assessment of the system for use in 
the Statistical Engineering algorithm. What we need is an estimate of the overall measurement 
variation (and perhaps the bias) to determine if the measurement system is the home of the 
dominant cause of deviation. 

 
S7.4 GAGE R&R AND ISOPLOT INVESTIGATIONS TO 

ASSESS MEASUREMENT VARIATION 
In sections 7.2 and 7.3, we recommended a plan and an analysis to estimate the variation 
and bias of a measurement system. The plan involved repeatedly measuring three specially 
selected parts using different operators, and possibly different gages, over both the short 
term and long term. Here we discuss two alternatives for estimating the measurement vari- 
ation: gage R&R and Isoplot investigations. 

 
Gage Reproducibility and Repeatability (R&R) 

To execute a gage R&R investigation, as described by AIAG (1995a) and Farnum (1994), we: 
• Choose 10 parts from regular production 
• Select two or three production operators 
• Have each operator measure each part two or three times 
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We then use an analysis of ranges to estimate the repeatability, the reproducibility, 
and the R&R, the combined effect of the two sources of variation. The R&R is an esti- 
mate of the overall measurement variation only if the time-to-time component is neg- 
ligible. In the standard analysis, we also use the same data to estimate stdev(due to 
process). 

This plan and the basic analysis have several deficiencies: 
 

• There is no time-to-time component in the plan. Most R&R studies are carried 
out as quickly as possible and miss the day-to-day or week-to-week component 
of the measurement variation. The R&R likely underestimates the overall 
measurement system variation. 

 
• The use of 10 parts selected over a short time is not sufficient to produce a reliable 

estimate of the variation of the true part dimensions in the process. Rather, we 
should use the available baseline information. 

 
• The analysis of ranges is inefficient and should be replaced by the corresponding 

analysis of variance. The ANOVA analysis is the default in MINITAB. See 
Wheeler (1992). 

 
• The numerical summaries should be augmented by appropriate graphs—see the 

MINITAB results that follow. This allows useful checks for outliers and 
interaction effects. 

 
To illustrate, we use the camshaft journal diameter context for demonstration purposes. 

Data generated to be realistic are given in the data file camshaft journal diameter measure- 
ment gageRR. We simulated the use of three operators who measure each of the 10 parts 
twice for a total of 60 measurements. 

The plan we recommended in Section 7.2 requires the same number of measure- 
ments in total as the typical R&R investigation but uses fewer parts and takes longer. We 
can add multiple gages and time periods to the R&R plan—see the AIAG Measurement 
System Analysis manual (1995)—but then the standard MINITAB gage R&R routine 
cannot be used. 

In any case, using the traditional gage R&R analysis stdev(due to process) is poorly 
estimated. In Table 6.3, the relative precision for estimating a standard deviation with a 
sample size of 50 is about ±20% For a sample size of 10, relative precision is approxi- 
mately ±50%. In other words, there is a huge uncertainty. 

Alternately, we recommend estimating the overall variation in the baseline investigation 
that uses hundreds of parts. We can then calculate the variation in the true values, stdev(due 
to process), using the square root formula 

 
stdev(due to process)  

 
To use this idea in the MINITAB gage R&R analysis, we need to enter the historical 

standard deviation. The detailed MINITAB results for the gage R&R are: 

stdev(total)2  + stdev(due to measurement)2
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Gage R&R Study - ANOVA Method 
Gage R&R for measurement 

 
Two-Way ANOVA Table With Interaction 
Source DF  SS MS F P 

 

part 9 2569.27 285.474 668.967 0.00000 
operator 2 12.98 6.490 15.209 0.00014 
operator*part 18 7.68 0.427 0.887 0.59664 
Repeatability 30 14.43 0.481   
Total 59 2604.36    

 
Two-Way ANOVA Table Without Interaction 
Source DF  SS MS F P 

 

part 9 2569.27 285.474 619.608 0.00000 
operator 2 12.98 6.490 14.087 0.00002 
Repeatability 48 22.12 0.461   
Total 59 2604.36    

 
Gage R&R 
Source 

 
VarComp 

 

Total Gage R&R 0.762 
Repeatability 0.461 
Reproducibility 0.301 

operator 0.301 
Part-To-Part 47.502 
Total Variation 48.264 

 

Source 
StDev 
(SD) 

Study Var 
(5.15*SD) 

%Tolerance %Process 
(SV/Toler)      (SV/Proc) 

Total Gage R&R 0.87304 4.4962 17.98 14.42 
Repeatability 0.67877 3.4957 13.98 11.21 
Reproducibility 0.54906 2.8277 11.31 9.07 

operator 0.54906 2.8277 11.31 9.07 
Part-To-Part 6.89219 35.4948 141.98 113.83 
Total Variation 6.94726 35.7784 143.11 114.74 

 

Number of Distinct Categories = 11 
 

From this investigation, we obtain an estimate for stdev(due to measurement) of 0.87. 
The most critical result is given in the row labeled “Total Gage R&R” and the column 
labeled “%Process (SV/Proc)” in the final ANOVA table. This value estimates 100 * 
stdev(due to measurement)/stdev(due to process), that is, 100/D as defined by Equation (7.2). 
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In the example we have 100/D = 14.42, or D = 6.9. Thus, we conclude that the measure- 
ment system is adequate. Note that by providing an estimate for stdev(overall) we have not 
used the estimate for stdev(due to process) derived just from the gage R&R (6.89 in the 
example). 

The estimate for stdev(due to measurement) derived from the gage R&R results differs 
from the 0.756 we obtained in Section 7.2 based on the same data. The gage R&R results are 
determined using a random effects ANOVA model, while the Section 7.2 results come from a 
fixed effects ANOVA model with different assumptions. See Feder (1974) for a discussion of 
the difference between fixed and random effects models. For our purposes, neither model is 
ideal. However, since we are looking for large effects, either model would suffice. 

The AIAG standard for measurement systems is that the measurement variation must 
be less than 30% of the overall variation. This criterion corresponds to a discrimination 
ratio D, as defined by Equation (7.2), greater than 3.2. We recommend a more liberal cutoff 
point for problem solving, since by using the baseline data we have a better estimate for 
stdev(process). The more stringent AIAG standard applies to measurement systems used 
for process control and part inspections. 

The gage R&R analysis should be supplemented by graphical displays to check assump- 
tions underlying the numerical calculations. The useful default plots automatically provided 
by MINITAB are given in Figure S7.4. 

We can examine the various graphs looking for evidence of outliers and interactions 
between operators and parts. In the example, we see no concerns. 

 
 
 
 

Gage R&R (ANOVA) for measurement 

 
 

Gage name: 
Date of study: 
Reported by: 
Tolerance: 
Misc: 
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Figure S7.4 Default MINITAB graphical gage R&R output. 
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Isoplot 
 

A second method for assessing a measurement system is an Isoplot investigation (Traver, 
1995). An Isoplot investigation has a simple plan: 

• Select 30 parts from production to reflect the baseline variation 

• Measure each part twice using different operators, gages, and time periods 

Note that if we use the same operator and gage to measure each part over a short time, we 
are assessing repeatability only. We analyze the data using ANOVA and a scatter plot. We 
give Isoplot data generated to be realistic for the camshaft journal diameter example in the 
data file camshaft journal diameter measurement isoplot. 

The (edited) ANOVA results for the Isoplot investigation are as follows. We use only a 
part term in the ANOVA model. 

 
One-way ANOVA: diameter versus part 

 

Analysis of Variance for diameter  
Source DF SS MS F P 
part 29   2551.910 87.997 128.14 0.000 
Error 30 20.602 0.687  
Total 59 2572.512   

    Individual 95% CIs For Mean 
    Based on Pooled StDev 
Level N Mean StDev ------+---------+---------+---------+ 

1 2 –10.998 0.030 (*-) 
2 2 –8.322 0.168 (-*) 
. . .    

29   2 10.150 0.976 (-*) 
30   2 –2.352 0.508 (*-) 

------+---------+---------+---------+ 
Pooled StDev = 0.829 –8.0 0.0 8.0 16.0 

 

From the ANOVA results, we estimate stdev(due to measurement) as 0.829 and we can estimate 
stdev(due to process) as 2 26.55 6.603 0.829− . The plan uses 30 parts to estimate the  
process variation. This is an improvement over the gage R&R. With only 30 parts, the rel- 
ative precision for estimating a standard deviation is approximately ±25%. We prefer to 
derive an estimate for stdev(due to process) by combining the results of the baseline and 
measurement investigations. 

We also plot the first versus second measurement on each of the selected parts as in 
Figure S7.5. This scatter plot is sometimes called an Isoplot. We can see the process variation 
by looking at the spread of values on either axis. Note that a point on the 45° line corre- 
sponds to the two measurements on that part being identical. If all the plotted points are 
clustered tightly around the 45° line, then we know that the measurement system standard 
deviation (or the appropriate component, depending on the plan) is small relative to the 
process variation. 



Checking the Measurement System CD–219 
 

 
 
 

10 
 
 
 

0 
 
 
 

–10 

 
–10 0 10 

Measurement 1 

 
 

Figure S7.5 Scatter plot of the measurement results (dashed line represents 
“measurement 1” = ”measurement 2,” the 45° line). 

 
 

The scatter plot is valuable because we can easily see the comparison of the measurement 
variation and process variation. We can also identify any outliers on the plot. 

The Isoplot method has several deficiencies: 

• There is no time-to-time component in the plan. Most Isoplot investigations are 
carried out as quickly as possible and miss the day-to-day or week-to-week 
component of measurement variation. 

• Since all second measurements are conducted under identical conditions, only one 
family of causes that influence measurement variation is assessed at a time. 

• The use of 30 parts and 30 repeated measurements is not enough to get good 
estimates of the process and measurement variation, respectively. 

Bhote and Bhote (2000) recommended the use of the Isoplot and a minimum measure- 
ment discrimination ratio D of 5 before proceeding to the next stage of their process- 
improvement algorithm. We believe this is too conservative. 

 

Comparison to Proposed Measurement Assessment Plan in Chapter 7 

In comparison to both gage R&R and Isoplot, our proposed measurement assessment 
plan uses fewer parts with more measurements per part. In this way, the investigation 
focuses on estimating just the measurement variation (rather than the variation due to 
the process as well). The available baseline information gives an estimate of the total vari- 
ation, and using Equation (7.2), we can solve for the variation due to the process. In this 
way we obtain more precise estimates of the variation both due to the measurement sys- 
tem and due to the process. This allows better decisions regarding the adequacy of the 
measurement system. 
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S7.5 INTERPRETING MEASUREMENT VARIATION 

In the camshaft diameter example in Section 7.2, the estimated measurement variation is 
0.756 microns. What does this tell us about the measurement system? 

If we know the bias is close to zero, then a series of measured values on the same part 
vary about the true value with standard deviation close to 0.756 microns. In other words, 
we would be surprised to find a measured value more than two standard deviations—that 
is, 1.63 microns—away from the true value. 

When the bias is not known, we cannot interpret the measurement variation in terms of 
how close the measured value will likely be to the true value. Instead we consider the dif- 
ference in two measurements on the same part. Using the results from the models described 
in Chapter 2, the difference in two measurements on the same part will have mean zero  

(differencing eliminates the unknown bias and true value) and standard deviation 
close to 2 0.756×  = 1.07. In other words, we would be surprised to see two diameter 
measurements on the same part differ by more than two standard deviations—that is, 2 ⋅ 1.07 
= 2.14 microns. 

 
 
S7.6 EFFECT OF MEASUREMENT VARIATION 

We have argued that if the ratio of the process-to-measurement system standard deviations 
(that is, the discrimination ratio, D) falls between 2 and 3, we should improve the measurement 
system before we proceed, even though it is not a dominant cause of the overall output 
variation. Here we justify this recommendation. 

Measurement variation makes finding a dominant cause more difficult. For instance, 
measurement errors will influence estimates of the contributions of causes to the total vari- 
ation. The importance of measurement variation depends on the approach and is of greater 
concern for approaches whose implementation requires ongoing measurement, such as 
feedforward control, feedback control, and 100% inspection. 

The effect of measurement variation depends on the goal of the process investigation. To 
keep the discussion simple, we formally compare the effect of measurement variation on our 
ability to detect differences in mean output level between two groups of parts. We may com- 
pare groups when trying to find or verify a dominant cause of variation and when assessing 
the proposed variation reduction approaches. 

As measurement variation increases, it becomes more difficult to determine if any 
observed difference between the groups is due to chance or due to a real difference in aver- 
age level. We quantify the effect of measurement variation based on the increase in sample 
size (of the two groups) needed to detect the same size difference in the average level with 
the same power or probability. Our ability to detect a particular size difference in the aver- 
age level depends on the inherent variation (stdev(total)) in the dimensions that here, for 
simplicity, we assume is the same in the two groups. Part of the inherent variation is due to 
measurement variation. We compare the case where there is no measurement error—that is, 
stdev(total) = stdev(due to process)—to the case where there is measurement error—that 
is, stdev(total), is given by Equation (7.1). 
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To detect differences in the two groups, we compare the observed sample averages in 

the two groups. Under conceptual repeated sampling and measuring, the standard error 
of an average decreases by a factor 1 n as the sample size n increases. As a result, 
the sample size needed to maintain the desired power is greater by a factor 

 
( ) ( )( ) ( )2 2 2due to process due to measurement due to processstdev stdev stdev+

if measurement variation is present. 
Thus, using D = stdev(due to process)/stdev(due to measurement), measurement variation 

results in a 100/D2 percent increase in the sample size requirements over the case with no 
measurement error. For example, if stdev(due to measurement) = 0.3 stdev(due to process), 
that is, D = 3.3, the sample sizes needed to detect average differences are roughly 9% larger 
than if there were no measurement error. This seems a fairly small effect. To be somewhat 
conservative, and acknowledging that there may be some error in our of D, we set the mini- 
mum value at 3. 

 
 
S7.7 FINDING A DOMINANT CAUSE OF MEASUREMENT 

VARIATION 
 

There are many other attributes of the measurement process that may be of interest, espe- 
cially if we judge the system to be inadequate. The basic idea is to divide the measurement 
bias and variation into components that can be assigned to inputs such as operators, parts, 
time, and the environment. We demonstrate the decomposition using operators. 

Suppose that the measurement system includes two or more operators. We have 
defined the measurement variation and bias in terms of measurement errors based on a 
broad target population of measurements made on many parts over a long period of time. 
We can stratify this population according to which operator makes the measurements and, 
for any particular operator, we define the measurement bias and variation of the measurement 
system as the average and standard deviation of the measurement errors if that operator 
made the measurements. 

If we assume that each operator makes the same proportion of the measurements, we 
can decompose the idealized histogram of the measurement errors into histograms for each 
operator such as the one shown in Figure S7.6. 

In general (and as seen in Figure S7.6) it is true that: 

• The measurement system bias is the average of the individual operator biases. 

• The measurement variation depends on the measurement variation for 
individual operators and the relative biases among the operators. 
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Measurement error 

 
 

Figure S7.6 Decomposition of measurement errors by operator (solid line shows 
distribution of overall measurement error). 

 
The overall system bias can be zero even if each operator bias is not. Also, the differ- 

ences in operator bias contribute to measurement variation. This is another example of the 
combination of group-to-group and within-group variation that we discussed in Chapter 2 
and its supplement. 

In looking for opportunities to improve a measurement system, we can stratify by 
operator. Suppose that we identify large differences among the operator-specific attributes. 
Then, we know that these differences arise because of differences in the methods among 
the operators. If we can standardize the method, we will see substantial improvement in 
the overall measurement system attributes. 

We use the camshaft journal diameter data from the plan described in Section 7.2 to 
look at differences among operators. In this plan, each operator measured each part six 
times. Since we do not know the true value of the diameters, we calculate 

 
deviation = measured value – part average 

 
for each of the 54 measured diameters. We show these data plotted by operator in Figure S7.7. 

The three operators have roughly the same measurement variation, but some (a small 
component) of the total variation comes from differences in relative bias between the operators, 

since the average “diameter minus part average” differs between operators. 
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Figure S7.7 Diameter (deviation from part average) by operator. 
 
 

We may see many different patterns in plots such as Figure S7.7 that will lead us to 
different actions such as: 

• No differences among operator measurement bias and variation—look 
elsewhere for opportunities to improve the system. 

• Different measurement variation or different relative biases for each operator— 
look for systematic differences among the methods used by the different 
operators. 

We can do the same analysis with other inputs to the measurement process such as gages, 
environmental inputs, and time. 
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Chapter 9 Supplement 
Finding a Dominant Cause Using the 

Method of Elimination 
 
 
 

S9.1 COMPARISON OF STRATEGIES FOR FINDING A 
DOMINANT CAUSE 

A standard strategy to find the (dominant) cause of a problem is to: 

• Create a list of all possible causes, using people experienced with the process. 

• Prioritize the list of causes in terms of the likelihood that each has a large effect. 

• Investigate the causes in order of priority, either singly or in groups. 

The first step often involves brainstorming (Evans and Lindsay, 1993), a formal process 
designed to elicit ideas from a group of people. We then use a cause-and-effect diagram 
(Ishikawa, 1982) to categorize the causes into what we call families (main branches) and 
subfamilies (twigs). We can prioritize the causes using multivoting (Scholtes, 1988), a nom- 
inal group technique (Brassard, 1988), or some other process, democratic or otherwise. We 
then have relatively few causes left to investigate. We can use available data and experimental 
or observational investigations to determine the effects of the top-ranked causes. 

In Figure S9.1, we give a cause-and-effect diagram that was constructed by a team trying 
to reduce variation in the diameter runout on a transmission output shaft. The diagram is 
unusual in that it does not use the standard main branches (man, machine, material, method, 
measurement, and environment). Given this list of potential dominant causes, the team 
struggled with what to do next. In the end, they abandoned the idea of finding the dominant 
cause and instead looked to make the process more robust by changing a number of fixed 
inputs in an experimental investigation. This investigation was a failure. 
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Figure S9.1 Example of conventional brainstorming to list all potential dominant causes. 
 
 

We have recommended a different strategy, the method of elimination, based on forming 
and eliminating families of causes using available data and observational plans. The strategy 
involves: 

• Dividing the causes into two or more families 

• Using simple process investigations to rule out all but one family 

• Iterating until one suspect (or a few at most) remains as a possible dominant cause 

• Verifying the suspect(s) as the dominant cause 
We expect that we will require several iterations to rule out most causes and home in 

on the dominant cause. At each iteration, we split the remaining causes into families based 
on process knowledge and the ease with which we can investigate the process. We never list 
causes in families that have been eliminated. 

There are two major differences between the two strategies. 
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The cause-and-effect diagram is a hindrance for the method of elimination. The fami- 
lies are not constructed with the idea of elimination. In the output shaft example, we can- 
not think of an investigation that would eliminate all but one of the five families. If the main 
branches are considered families, there are too many families to start and time is wasted 
getting the detailed list of causes within each main branch. We have been involved in proj- 
ects where considerable time was spent arguing about the labels for the main branches of 
the cause-and-effect diagram and which causes went where. 

The second difference is the method of prioritizing the causes. With the method of 
elimination, at each step there are only a few families, and we can let the process do the voting 
by carrying out an appropriate investigation. On the other hand, with a cause-and-effect 
diagram and multivoting, for example, there is no guarantee that the dominant cause is 
anywhere near the top or even on the final list. 

 
 
S9.2 NO SINGLE DOMINANT CAUSE 

 
In the method of elimination, we assume there is a single dominant cause of the baseline 
variation. This assumption can be wrong in two ways: 

• There are two (or perhaps three) causes, each with a large effect. 

• There is no dominant cause, only a large number of causes, each with a 
relatively small effect. 

If there are two (or three) dominant causes, each with a large effect, that live in different 
families, we cannot rule out either of those families. We then investigate the families 
separately to search for the dominant causes. Once we isolate the dominant causes, we 
may need to choose a different variation reduction approach to address each of them. 

The second case in which there is no dominant cause contradicts the Pareto Principle. 
We believe this to be a rare occurrence. We may find a dominant family but no single cause 
within that family. We may rule out any of these families and then decide, in the next split, 
that there are two dominant families. As we partition the causes further, we will never be 
able to explain the full extent of variation found in the baseline investigation with a family of 
only a few causes. 

In our experience, the search for the dominant cause is often abandoned in these cases. 
The consequence is that none of the caused-based variation reduction approaches is an 
available remedy. We must select a working approach that does not require the identifica- 
tion of the cause. 
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Investigations to Compare Two Families 

of Variation 
 
 
 

S10.1 ANALYSIS OF VARIANCE 

To find the dominant cause, we need to identify the family that explains a large component 
of the overall variation. In the examples presented in Chapter 10, we relied on graphical displays 
(for example, scatter plots, box plots, and multivari charts). If needed, we can use a one-way 
analysis of variance (ANOVA) to estimate the components of variation due to each family. 
We describe ANOVA in more detail in Appendix D. 

Consider the rod thickness example. The data are given in the file rod thickness base- 
line. The ANOVA results correspond to Figure 10.3. 

 
Analysis of Variance for thickness 
Source DF  SS  MS  F  P 
position 3 46256.5 15418.8 241.45 0.000 

 

Error 796 50831.0 63.9  
Total 799 97087.5  

    Individual 95% CIs For Mean 
    Based on Pooled StDev 
Level N Mean StDev ------+---------+---------+---------+ 
1 200 37.820 8.040 (-*-) 
2 200 37.975 8.286 (-*-) 
3 200 21.580 7.559 (-*-) 
4 200 40.925 8.062 (-*-) 

    ------+---------+---------+---------+ 
Pooled StDev = 7.991  24.0 30.0 36.0 42.0 

 

The important result in the ANOVA output is the Pooled StDev, which is an estimate of 
the process standard deviation if all of the position averages are equal. In this example, the 
Pooled Stdev equals 
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Pooling the standard deviations within each position is the method that we used to estimate 
the measurement system variation in Chapter 7, where we pooled the standard deviations 
within each part. 

Since the baseline standard deviation for rod thickness was 11.023 (see Chapter 6), we 
can make substantial improvement by aligning the position averages. From the plots pre- 
sented earlier, we need to increase the thickness center for position 3. We can adopt the 
Move the Process Center approach to learn how to make the change. We can use the ANOVA 
results to assess the maximum benefit from this process change. 

We consider a second example to illustrate some further complexities in interpreting 
ANOVA results. 

 
Block Porosity 

Consider the block porosity example in Chapter 10. The data are given in the file engine 
block porosity multivari. Recall that porosity was measured on five blocks molded consec- 
utively, once per hour over one shift. The goal was to identify which of the two families, 
hour-to-hour or mold-to-mold, was the home of the dominant cause. We apply a one-way 
ANOVA with porosity as the output and hour as the only term in the model. The results are: 

 
One-way ANOVA: porosity versus hour 

 

Analysis of Variance for porosity  
Source DF SS MS F P 
hour 7 282168 40310 7.72 0.000 
Error 32 167133 5223  
Total 39 449301   

    Individual 95% CIs For Mean 
    Based on Pooled StDev 
Level N Mean StDev ------+---------+---------+---------+ 
1 5 20.80 26.34 (------*------) 
2 5 102.60 48.86 (-----*------) 
3 5 7.40 5.22 (------*-----) 
4 5 8.40 3.71 (------*-----) 
5 5 224.80 127.12 (-----*------) 
6 5 8.40 6.99 (------*-----) 
7 5 14.20 8.96 (-----*------) 
8 5 190.00 149.57 (------*------) 

------+---------+---------+---------+ 
Pooled StDev = 72.27 0 100 200 300 

The Pooled StDev, 72.3, at the bottom of the MINITAB results gives an estimate of the 
variation due to causes that act in the mold-to-mold family. 

Using the overall standard deviation normally available from the baseline investigation, 
we estimate the component of the variation due to the hour-to-hour family as 

stdev(due to hour-to-hour)  stdev(total)2  + stdev(due to mold-to-mold)2
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Here the team did not conduct a baseline investigation for the new measure of 
porosity. They judged that they had seen the full extent of variation during the one-day 
investigation, because the proportion of scrapped blocks matched the historical level. 
As a result, we estimate the total variation by looking at the variation in porosity over 
the course of the investigation. We can use MINITAB to produce this estimate 
stdev(total) = 107.3: 

 
Variable N Mean Median TrMean StDev SE Mean 
porosity 40 72.1 16.5 58.7 107.3  17.0 

 

Variable Minimum Maximum Q1 Q3 
porosity 0.0 418.0 9.0 102.0 

 

An alternative is to take into account the special structure in the data. We can indirectly 
estimate the total variation using the available data by specifying hour as a random effect 
in the one-way ANOVA. Here the MINITAB results are: 

General Linear Model: porosity versus hour 

Factor Type Levels Values 
hour random 8  1  2  3  4  5  6  7  8 

 
Analysis of Variance for porosity, using Adjusted SS for Tests 

 

Source DF Seq SS Adj SS Adj MS F P 
hour 7 282168 282168 40310 7.72   0.000 
Error 32 167133 167133 5223  
Total 39 449301    

 

Variance Components, using Adjusted SS 
 

Source Estimated  Value 
hour  7017 
Error 5223 

 
Based on this result, we estimate the variation associated with the hour-to-hour family 

as 7017  = 83.8, and  of the total variation as 
 

( ) ( ) ( )2 2total due to hour-to-hour due to mold-to-mold 110.6stdev stdev stdev= + =

In this example, the two methods give similar estimates for the total variation. 
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Here, neither family is dominant. This is not surprising since we only resort to ANOVA 

when the conclusion from the plots is not obvious. However, we see that if we could elim- 
inate the mold-to-mold variation (or at least a substantial portion of it), we could substan- 
tially reduce the overall variation. The major advantage of using ANOVA when there is no 
obvious dominant family is that we can quantify the contributions of the various families. 
We can then decide which family we want to pursue. We expect there to be a dominant 
cause within each family. 

Note also that ANOVA Pooled StDev does not capture the interaction between causes 
in the two families, which is apparent in Figure 10.9. This interaction was the most impor- 
tant discovery in the investigation. We can see the interaction in the ANOVA results since 
the StDev values for each hour are very different (for example, 26.3 for hour 1 and 149.6 
for hour 8). The calculated Pooled StDev masks these differences. 

 
S10.2 POSSIBLE EXPLANATIONS FOR OBSERVED 

CHANGES IN VARIATION 

In some investigations, we observe a change in both process center and variation when the 
output is stratified by location or time. The engine block porosity problem provides an 
example. From Figure 10.9 we see that both the average level and variation of porosity 
change from hour to hour. We learn a lot about the nature of the dominant cause from this 
observed pattern. 

Here we explore possible reasons for a change in both average and variation. We give 
two simple explanations in Figure S10.1, where the relationship between the dominant 
cause and the output is roughly linear. The horizontal and vertical axes give the full range 
of variation for the cause and the output. 

 
 

  
Dominant cause Dominant cause 

 
 

Figure S10.1 Possible explanations for engine block porosity results (o—observations for 
hours 2, 5, and 8; x—observations for other hours). 
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In the left-hand panel, the range of values for the dominant cause for hours 2, 5, and 8 
is different than the range for the other hours. In the right-hand panel, the relationship 
between the cause and porosity depends on the time period, and in hours 2, 5, and 8 the 
process is much more sensitive to variation in the dominant cause. This pattern in the right 
panel indicates there is a strong interaction involving the plotted cause and some other 
input that changes from hour to hour. 

In the example, the range of the dominant cause was different in hours 2, 5, and 8. At 
these times, the pouring temperature was lower and varied substantially, since during breaks 
the iron cooled. 

There is a similar explanation for a change in variation between groups when there is 
no corresponding change in the process center, as in the hypothetical V6 piston diameter 
illustrated in Figure 10.17. The two possibilities are illustrated in Figure S10.2, where the 
horizontal and vertical axes give the full range of variation for the dominant cause and the 
output. We have: 

• Left panel: The variation in the dominant cause is different for streams A and B 

• Right panel: The effect of changes in the dominant cause is much greater for 
stream B than stream A 

We can also have a combination of the two scenarios. 
If we observe such patterns, we cannot rule out the within-strata or strata-to-strata families. 

However, we do get a strong clue about the nature of the dominant cause. To proceed, for 
example in the V6 piston investigation, we consider causes within stream B and look for dif- 
ferences in causes or effects between the two streams. We have a big advantage because we 
know it is possible to run process (that is, stream A) in a way that results in substantially less 
output variation. 

 
 

  
 

Dominant cause 
 

Dominant cause 

 
 

Figure S10.2 Possible explanations for pattern in Figure 10.17 (observation from streams 
A and B are denoted with x and o, respectively). 
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S10.3 WHY FORMAL HYPOTHESIS TESTS ARE NOT 
RECOMMENDED 

Formal hypothesis tests, such as t-tests and the F-test given in ANOVA output, are used to 
determine if there is a statistically significant difference between the output averages when 
stratified by the value of an input. In this context, by a statistically significant difference we 
mean that we cannot explain the difference in strata averages by the variation within the 
strata. Consider the rod thickness example discussed in sections 10.1 and S10.1. We give 
again the ANOVA results that correspond to Figure 10.1. 

One-way ANOVA: thickness versus position 

Analysis of Variance for thickness 
Source DF  SS  MS  F  P 
position 3 46256.5 15418.8 241.45 0.000 

 

Error 796 50831.0 63.9  
Total 799 97087.5  

    Individual 95% CIs For Mean 
    Based on Pooled StDev 
Level N Mean StDev ------+---------+---------+---------+ 
1 200 37.820 8.040 (-*-) 
2 200 37.975 8.286 (-*-) 
3 200 21.580 7.559 (-*-) 
4 200 40.925 8.062 (-*-) 

    ------+---------+---------+---------+ 
Pooled StDev = 7.991  24.0 30.0 36.0 42.0 

 

We see that: 

• There are statistically significant differences among the position average 
thicknesses, since the p-value 0.000 in the F-test is so small 

• Some of the 95% confidence intervals for the position means do not overlap in 
the plot 

We conclude that there are position-to-position differences among the averages. We 
cannot conclude, however, that position is a dominant cause. 

We see the same difficulties, as illustrated here for ANOVA, with nonparametric tests 
based on end-counts (due to Tukey, 1959) as recommended by Bhote and Bhote (2000) and 
others. The tests can identify groups with statistically significant differences but do not tell 
us if the dominant cause acts in the group-to-group family. 

In general, with large sample sizes, a formal hypothesis test will show that there are 
statistically significant differences among group averages. The small difference may have 
no practical significance, however. We are searching for a dominant cause that explains a 
large part of the variation in the output, not for causes with small but statistically significant 
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effects. The dominant cause will produce significantly different averages, but the converse 
is not necessarily true. For this reason, we do not rely on hypothesis tests to help in the 
search for a dominant cause. 

 

S10.4 OTHER PLANS FOR COMPARING UPSTREAM AND 
DOWNSTREAM FAMILIES 

In Chapter 10, we looked at a plan to compare upstream and downstream families by meas- 
uring the output at an intermediate operation and at the end of the process for the same 
parts. Additional references concerning variation transmission investigations include 
Agrawal (1997), Lawless et al. (1999), and Agrawal et al. (1999). 

Here we consider two other plans for comparing upstream and downstream families 
that do not require measuring the output mid-process. These plans, operations swap and 
randomized sequencing, have limited applicability. There are more complex versions if we 
want to compare several processing steps simultaneously. 

 
Operations Swap 

Operations swap (Ingram, 1993) is feasible if: 

• Differences between two parallel processes are a dominant cause of variation. 
• We can swap parts between the two parallel processes at some intermediate 

processing step. 

The idea is simple. We swap the production path of parts moving through the process at 
a given processing step (for example, halfway through the process). Figure S10.3 illustrates 
the plan with two parallel lines and two operation steps. The solid lines show the usual 
process path through lines 1 and 2. The dashed lines show how we propose to swap the path 
of parts between operations A and B temporarily for the purposes of the investigation. 

We keep track of the parts that are swapped. Then, we compare the output of the two 
streams of swapped parts with the performance of the regular processes. We know 
there was a substantial difference in performance between the two production lines 
before the swapping. If the performance of the swapped parts that went through operation A 
in line 1 and operation B in line 2 matches the performance of line 1 before the swapping 

 
 
 

Line 1 
 
 
 

Line 2 
 
 

 

Figure S10.3 Operations swap illustration. 
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investigation, and similarly for line 2, then we can conclude that the dominant cause of the 
difference between the two lines is in operation A or earlier. 

An operations swap investigation can be logistically difficult. We need to continue swap- 
ping, tracking swapped parts, and measuring finished parts (though it is not necessary to 
swap all parts in the given time period) until we see the full extent of variation in the output. 

Swapping parts from line 1 to line 2 and vice versa is not necessary. We could draw 
conclusions just by swapping in one direction. However, the double swap is useful to 
ensure nothing else has changed in the process and, for logistical reasons, to balance the 

load on the two production lines. 
 
 

Randomized Sequencing 

Randomized sequencing (Asher, 1987) is feasible if: 
• The process output exhibits a known pattern of variation—for example, a drift— 

or sustains shifts. 

• We can change the processing order of parts at an intermediate operation and 
later identify the order used. 

Suppose the output drifts with a predictable pattern over each day. To conduct the 
randomized sequencing plan, we: 

• Select a sample of parts spread out over one day after operation A. 

• Record the time for each sampled part and set it aside. 

• Randomize the order of these parts. 

• Process and track the parts through operation B. 

• Measure the output. 

This plan is illustrated in Figure S10.4. 
If the dominant cause lives in operation A or upstream, we will see the predicted drift 

when we plot the output against the time of processing through operation A. If we do not 
see the predicted drift, then we know the dominant cause lies in operation B. 

 
 

Order 
ABCDEFGHIJ 

Order 
BCFGDEJIHA 

 

 
 

 

Figure S10.4 Randomized sequencing illustration. 
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S10.5 APPLYING LEVERAGE IN COMPARING ASSEMBLY 
AND COMPONENT FAMILIES 

To compare the assembly and component families for an assembled product, we recom- 
mend the following plan: 

• Select two parts with output at the extremes of the baseline distribution. 

• Disassemble and reassemble each part at least three times and measure the 
output each time. 

• Plot the results and look for changes in the output. 

Large changes in the performance of the product after disassembly and reassembly 
indicate that the assembly family is the home of the dominant cause. It is surprising that we 
can make such a claim with such a small sample size. This is a good example of leverage, 
where we ensured that we would see the full extent of variation in the sample. 

We can describe the output for any assembly as a function of a contribution from the 
components and a contribution from the assembly. The standard deviation of the output can 
be expressed as 

 
stdev(output)  

 
Suppose, for the moment, that the assembly variation is dominant—that is, stdev(due 

to assembly) is much larger than stdev(due to components). When we select two parts with 
extreme output values, we can be confident that the reason the values are extreme is that the 
contributing values from the assembly are also extreme. This must be true since, by our 
hypothesis, the contributions from the components are not highly variable and hence cannot 
produce the extreme values. 

When we disassemble and reassemble the parts, the contribution of the components 
does not change. However, the assembly contributions will change, and since we started 
with extreme values, we expect that there will be large changes to the output. 

On the other hand, if the dominant cause lives with the components—that is, stdev(due 
to components) is much larger than stdev(due to assembly)—then the reason for the extreme 
values is a large component contribution. When we disassemble and reassemble such parts, 
we will continue to see extreme values for the output since the component contribution is 
not changed. 

stdev(due to components)2  stdev(due to assembly)2
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S11.1 ANALYSIS OF VARIANCE FOR MULTIVARI 
INVESTIGATIONS 

We use multivari investigations to examine the effects of a number of families of causes 
simultaneously. If there are three or more families, our strategy is to examine several multi- 
vari charts to eliminate families as the home of a dominant cause. If there are many families, 
or, more important, no single dominant family, we can use analysis of variance to quantify the 
contribution of each family to the overall variation. 

We illustrate the use of ANOVA with three examples where the additional analysis is 
warranted. 

 
Casting Thickness 

At a foundry, a team was assigned the task of reducing variation in thickness, specified at 
four locations on each casting. A baseline investigation found that the full extent of variation 
in thickness (as measured from nominal) was –20 to 35 thousandths of an inch. The team 
found that the measurement system was acceptable and decided to look for a dominant 
cause of thickness variation. 

They conducted a multivari investigation in which they measured thickness at the four 
positions for three consecutive castings from each of the six cavities in the mold. They 
sampled each hour for six hours on two different days to get a total of 864 thickness mea- 
surements on 216 castings. The data are available in the file casting thickness multivari. 
This investigation will allow us to look at the following families and their interactions: 

• Casting-to-casting 

• Position-to-position 

• Cavity-to-cavity 

• Hour-to-hour 

• Day-to-day 
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Plotting a histogram of the multivari data, as shown in Figure S11.1, we see close to the 
full extent of variation from the baseline. 

We give a number of multivari charts in Figure S11.2 looking at the individual families. 
We have defined a new input time that sequentially numbers the 12 time periods representing 
all the possible combinations of hour and day and a new input group to uniquely identify the 
sets of three consecutive thickness measurements within a position at the different time 
periods. We used group = (time – 1)*24 + (cavity – 1)*4 + position. 

The multivari charts are not easy to interpret, since there is no single dominant cause. 
We can attribute a large amount of variation to the position-to-position, cavity-to-cavity, and 
casting-to-casting families (as shown by the multivari chart by group). In this example, we 
can quantify the components of variation that can be attributed to the various families. Using 
the model from Chapter 2, if the causes in separate families act independently, we have 

 
sd total 

 

In the ANOVA calculation, the total sum of squares is similarly partitioned into sums 
of squares associated with the various families. See Neter et al. (1996) and Box et al. 
(1978) for a general background on ANOVA. See also de Mast et al. (2001) for a more for- 
mal discussion of the connection between multivari charts and ANOVA. 

We propose to fit an ANOVA model with all possible terms involving the inputs whose 
effects are expected to be systematic. For example, we might expect a systematic differ- 
ence (in the average thickness) among the four positions. We would not expect systematic 
variation among the measurements taken at one position from consecutive castings. That 
is, we would be surprised if the average of the first measurement over all cavities and times 
was substantially different from the average of the second measurement. 
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Figure S11.1 Histogram of casting thickness multivari data. 
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Figure S11.2 Multivari charts for casting thickness. 
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See Appendix D for details on how to fit the ANOVA model in MINITAB. We get the 
following results when we fit an ANOVA model with time, cavity, and position (the three 
inputs expected to have systematic effect) and all interactions among these three inputs. 

 
ANOVA:  thickness  versus  time,  cavity,  position 

Factor Type Levels Values 

 
 
 
 
 

Analysis of Variance for thickness 
 

Source DF SS MS F P 
time 11 9008.82 818.98 31.81 0.000 
cavity 5 16994.99 3399.00 132.00 0.000 
position 3 16697.24 5565.75 216.15 0.000 
time*cavity 55 1544.02 28.07 1.09 0.311 
time*position 33 7580.19 229.70 8.92 0.000 
cavity*position 15 5363.43 357.56 13.89 0.000 
time*cavity*position 165 1634.06 9.90 0.38 1.000 
Error 576 14832.00 25.75   
Total 863 73654.75    

 

To compare the relative sizes of the families, we look at the sum of squares (SS) col- 
umn. We see large, roughly equal-sized effects due to position, cavity, and error. This 
matches our conclusion from the multivari charts. The calculated sum of squares tell us 
approximately how much we could expect to reduce the total sum of squares if we could 
eliminate all variation due to the given family. 

It is not easy to translate these sums of squares into estimates for the standard deviation 
attributable to each family, but there is a rough correspondence. Recall that we are looking 
for dominant causes. For example, if we eliminate cavity-to-cavity variation, the total sum 
of squares is reduced by 16994.99 to 56659.76 and the estimated overall standard deviation 
is reduced from 9.24 ( 73654.75  863 ) to 8.10 ( 56659.76  863 ). 

The error sum of squares is relatively large at 14832. This sum of squares includes the 
effect of the casting-to-casting family (recall that the casting-to-casting family is expected 
to have haphazard effect) and all interactions between the casting-to-casting family and the 
other families. We look more at this family in the next section. 

As there was no single dominant family, the team proceeded by trying to address each 
of the three large families separately. 

time fixed 12 1 2 3 4 5 6 7 
   8 9 10 11 12   
cavity fixed 6 1 2 3 4 5 6  
position fixed 4 1 2 3 4    
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Block Bore Diameter 

We can also use an ANOVA when the volume of data in a multivari investigation is large. 
With large amounts of data, there are so many points on the multivari charts that they are 
difficult to interpret, especially when we are looking at interactions. 

In an investigation to try to find the dominant cause of engine block bore diameter 
variation, the team had access to a large volume of data that was automatically collected 
on every block. The team sampled from the complete database to isolate the effects of 
several families. They selected diameter measurements from: 

• Three consecutive blocks selected from the process each hour for 80 hours 

• All eight bores for each block 

• Three heights and two orientations at each height for each bore 

We give the 11,520 observations in the file block bore diameter multivari. To reduce 
the number of families, we define a new input, called position, with six values, which 
labels the two different orientations at three heights. If the position-to-position variation is 
found to be large, we can look more closely at this family. 

We find multivari charts, such as Figure S11.3, difficult to interpret because of the 
large number of time periods used in the investigation. The chart does show that there are 
several odd values about a third of the way through the data set that we should investigate 
further. 
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Figure S11.3 Multivari chart for bore by time. 
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To try to understand the results, we fit a full ANOVA model using all families (except 
block-to-block) and their interactions: 

 
ANOVA: diam1000 versus time, bore, position 

Factor Type Levels Values 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Analysis of Variance for diam1000 
 

Source DF SS MS F P 
time 79 24602.93 311.43 56.34 0.000 
bore 7 951.65 135.95 24.60 0.000 
position 5 10614.80 2122.96 384.09 0.000 
time*bore 553 15568.13 28.15 5.09 0.000 
time*position 395 5344.71 13.53 2.45 0.000 
bore*position 35 4417.75 126.22 22.84 0.000 
time*bore*position 2765 2935.01 1.06 0.19 1.000 
Error 7680 42449.46 5.53   
Total 11519 106884.44    

 

The two largest sums of squares correspond to Error and time. We conclude that 
dominant causes of variation act in the block-to-block family (or in an interaction involv- 
ing the block-to-block family) and the time-to-time family. The team proceeded to look for 
dominant causes within each of these families. 

 
Camshaft Journal Diameter 

In Chapter 11, we found a large grinder-to-grinder effect in the camshaft journal diameters. 
Looking at the part-to-part family with the multivari charts given in Figure 11.13 is diffi- 
cult due to the large number of possible values for the input group that indexes the 192 
sampling points. Here we fit an ANOVA model to the diameter data with inputs grinder, 

time fixed 80 1 2 3 4 5 6 7 
   8 9 10 11 12 13 14 
   15 16 17 18 19 20 21 
   22 23 24 25 26 27 28 
   29 30 31 32 33 34 35 
   36 37 38 39 40 41 42 
   43 44 45 46 47 48 49 
   50 51 52 53 54 55 56 
   57 58 59 60 61 62 63 
   64 65 66 67 68 69 70 
   71 72 73 74 75 76 77 
   78 79 80     
bore fixed 8 1 2 3 4 5 6 7 

   8       
position fixed 6 1 2 3 4 5 6  
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batch, hour, and position, and all possible interactions among these inputs. This model 
allows us to quantitatively assess the relative sizes of the effects due to each of the families 
and interactions among the families. 

 
ANOVA: diameter versus grinder, batch, position, hour 

Factor Type Levels Values 

 
 
 
 
 
 

Analysis of Variance for diameter 
 

Source DF SS MS F P 
grinder 1 11855.39 11855.39 1230.72 0.000 
batch 2 2.15 1.07 0.11 0.894 
position 7 298.55 42.65 4.43 0.000 
hour 3 12.40 4.13 0.43 0.732 
grinder*batch 2 22.54 11.27 1.17 0.311 
grinder*position 7 47.14 6.73 0.70 0.673 
grinder*hour 3 53.57 17.86 1.85 0.136 
batch*position 14 223.45 15.96 1.66 0.060 
batch*hour 6 85.25 14.21 1.48 0.184 
position*hour 21 238.67 11.37 1.18 0.261 
grinder*batch*position 14 92.57 6.61 0.69 0.789 
grinder*batch*hour 6 112.93 18.82 1.95 0.070 
grinder*position*hour 21 153.74 7.32 0.76 0.770 
batch*position*hour 42 487.06 11.60 1.20 0.180 
grinder*batch*position*hour 42 300.26 7.15 0.74 0.886 
Error 768 7398.07 9.63   
Total 959 21383.75    

 

From the ANOVA results, we see (as expected) that the largest sum of squares is asso- 
ciated with the family of causes that differ between the two grinders. The sums of squares 
for any other systematic family (that is, batch, hour, position, and interactions) are much 
smaller. The error sum of squares, representing the part-to-part family, is also fairly large. 
We explore the part-to-part family further in the next section. 

 
Comments 

We can use a random-effects ANOVA model that ignores the systematic nature of the 
effects as an alternative analysis. See Feder (1974) for a background on random-effects 
models. However, it is incorrect to assume a random effect for a family like position in the 
casting thickness example since there are only four positions in total. The random-effects 

grinder fixed 2 A B   
batch fixed 3 1 2 3 
position fixed 8 1f 1r 2f 2r 3f 3r 4f 

   4r       
hour fixed 4 1 3 5 7    
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ANOVA model provides estimates of the variance components attributable to the various 
families. In other words, the random-effects model provides estimates of stdev(due to a 
particular family). 

In the casting thickness example, the results from the ANOVA model and the multivari 
charts match closely. The ANOVA has the advantage of quantifying the contributions of the 
various families and, in one step, allowing us to look at interactions among the families. 
However, note that ANOVA models are looking for variation caused by differences in average 
output for different level of the inputs. They are not good at detecting other patterns such 
as changes in output variation across different levels of the inputs or outliers. We recom- 
mend first looking at graphical summaries of the data such as multivari charts before fitting 
an ANOVA model. 

If there are no families included in the multivari investigation that can be expected to 
have a haphazard effect, the proposed analysis strategy where we fit an ANOVA model with 
all inputs and interactions will not work in MINITAB. Although the appropriate sums of 
squares (which we use to draw conclusions) could still be calculated, MINITAB will not pro- 
ceed because there are no degrees of freedom left to estimate the error sum of squares. If 
there are no haphazard families, we recommend leaving out one of the families in the 
ANOVA model. The error sum of squares is then attributable to the left-out family plus all 
interactions between the left-out family and other families in the model. If the error sum of 
squares is large, we redo the analysis leaving out a different family, continuing until we find 
the home of a dominant cause. 

 
 

S11.2 HANDLING FAMILIES EXPECTED TO HAVE A 
HAPHAZARD EFFECT 

 
For large data sets or multivari investigations with many families, we have difficulty 
displaying the effect of families, such as part-to-part, that are expected to have a hap- 
hazard rather than systematic effect. To explore the variation due to a haphazard family, 
we define a new input that uniquely numbers the groups of consecutive parts. For 
instance, in the cylinder head example from Chapter 11 we defined group as (time – 1)*4 
+ pattern. Similarly, in the fascia cratering example we used group = (time – 1)*2 + 
(machine – 1). 

We illustrate the analysis to explore haphazard families with two examples. 
 

Casting Thickness 
 

The casting thickness example was introduced in the previous section. We expect the effect of 
the casting-to-casting family to be haphazard. We define a new input group that numbers the 
288 different sets of consecutive thickness measurements from each different combination of 
time, cavity, and position—that is, we use group = (time – 1)*24 + (cavity – 1)*4 + position. 
Fitting a one-way ANOVA model with group gives: 
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One-way ANOVA: thickness versus group 

 

Analysis of Variance for thickness  
Source DF SS MS F P 
group 287 58822.7 205.0 7.96 0.000 
Error 576 14832.0 25.7  
Total 863 73654.7   

 

Individual 95% CIs For Mean 
Based on Pooled StDev 

Level N  Mean StDev             --+---------+---------+---------+---- 
1 3 -2.000 1.000 (---*---) 
2 3 -2.000 1.000 (---*---) 
3 3 -5.667 3.512 (---*---) 

. 

. 

. 
(---*---) 

 
 

 
Pooled StDev = 5.074 

--+---------+---------+---------+---- 

 
The ANOVA divides the overall variation (as measured by the total standard deviation 

73654.7 / 863 = 9.24) into two components. 
Pooled StDev is an estimate of the variation attributable to the casting-to-casting fam- 

ily and all interactions between the casting-to-casting family and other families. In other 
words, if we could eliminate all group-to-group differences due to changes in time, cavity, 
and position, we estimate that the process standard deviation would be reduced to 5.074. 
That is, there is a dominant cause acting in the group-to-group family. We examined the 
components of this family (time, cavity, and position) in the first section of this supplement. 

Here, the pooled standard deviation is relatively small. In other cases, there may be a 
dominant cause in the part-to-part family. To demonstrate the methodology, suppose there 
is a dominant cause in the casting-to-casting family and we explore the casting-to-casting 
family further. We define a new output characteristic, the within-group standard deviation 
for each group. We then repeat the multivari analysis using the new output group stdev. To do 
this we need to define new input characteristics that correspond to the levels of the other 
families associated with each group. In the example, we define stime, scavity, and sposi- 
tion, which correspond to the time, cavity, and position associated with each group, respec- 
tively. See the discussion on multivari charts in Appendix C for details on how to do this 

easily with MINITAB. 
In the multivari chart, we are looking for any systematic change in the casting-to-casting 

variation over the other families. Note that these changes reflect an interaction with the 
casting-to-casting family. Looking at the multivari charts in figures S11.4 and S11.5 we 
conclude that the largest effect is due to a time-by-cavity interaction. At some particular 

286  3 23.000 14.731  
287  3 –1.000 1.732 (---*---) 
288  3 –1.333 2.517 (---*---) 
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Figure S11.4 Multivari charts for casting thickness group standard deviation. 
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Figure S11.5 Multivari chart for group stdev, showing cavity by time interaction. 
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times and for some cavities, the variation in thickness for three consecutive castings 
changes substantially. We are looking for a cause that can explain such process behavior. 

The interpretation of the results is difficult because the output is already a measure of 
variation. We see that for some times (for example, time 4) the variation in each group is small 
relative to other times. Also, for some times (for example, times 3, 5, and 12) the variation 
within a group varies for different cavities, while at all other times the variation within a group 
is similar for all cavities. From the interaction plot in Figure S11.5, we see that at some times, 
cavities 5 and 6 result in either more or less variation within a group than the other cavities. 
This matches the conclusion from fitting an ANOVA model with all but the three-input inter- 
action term, as given: 

 
ANOVA: group stdev versus stime, scavity, sposition 

Factor Type Levels Values 

 
 
 
 
 

Analysis of Variance for group stdev 
 

Source DF SS MS F P 
stime 11 705.022 64.093 22.19 0.000 
scavity 5 22.070 4.414 1.53 0.184 
sposition 3 14.738 4.913 1.70 0.169 
stime*scavity 55 715.179 13.003 4.50 0.000 
stime*sposition 33 288.226 8.734 3.02 0.000 
scavity*sposition 15 70.297 4.686 1.62 0.073 
Error 165 476.570 2.888   
Total 287 2292.102    

 

The conclusion is that the dominant cause acts casting to casting, but its effect varies 
with cavity and time. The team now must ask, “What causes vary in a way that matches this 
pattern?” 

 
Camshaft Journal Diameter 

The camshaft journal diameter example was introduced in Chapter 11 and also discussed in 
the previous section of this supplement. In the multivari analysis, we found the part-to-part 
variation was large, though not as large as the grinder-to-grinder variation. Here, we explore 
the part-to-part variation further by calculating the standard deviation within each group of 
parts by position, grinder, and batch. We define group = (grinder number – 1)*96 + 
(batch – 1)*32 + (hour–1)*8/2, since grinders A and B are coded 0 and 1, there are three 
batches, and the possible values for hour are 1, 3, 5, and 7. We then plot multivari charts 
using the within-group standard deviation as the output. 

stime fixed 12 1 2 3 4 5 6 7 
   8 9 10 11 12   
scavity fixed 6 1 2 3 4 5 6  
sposition fixed 4 1 2 3 4    

 



CD–250 Chapter Eleven Supplement 
 

G
ro

up
 s

td
ev

 
G

ro
up

 s
td

ev
 

 
 

7 7 
 

6 6 
 

5 5 
 

4 4 
 

3 3 
 

2 2 
 

1 1 
 

1 2 
Sbatch 

3 1 3 5 7 
Shour 

 

7 7 

6 6 

5 5 

4 4 

3 3 
 

2 2 
 

1 1 
 

1f 1r 2f 2r 3f 3r 4f 4r A B 
Sposition Sgrinder 

 
 

Figure S11.6 Multivari chart for group stdev for camshaft journal diameter multivari. 
 

We conclude from Figure S11.6 that there is no evidence of any effects that change the 
within-group standard deviation. The dominant cause of the part-to-part variation acts in a 
similar way over all grinders, batches, and times. 

 
 
S11.3 REGRESSION ANALYSIS FOR VARIATION 

TRANSMISSION INVESTIGATIONS 

In Chapter 11, we analyzed the results of a variation transmission investigation using scatter 
plots. In most cases we find this graphical analysis sufficient. We can, however, supplement 
the graphical analysis with a numerical analysis based on regression models. Depending on 
the observed pattern in the scatter plots, we can use a variety of forms for the model. If the 
relationship appears roughly linear, as in Figure S11.7 which shows the V6 piston diameters 
after Operations 270 and 310, we can use a model of the form: 

 

diameter after OP310 b0  b1 * diameter after OP270 residual, 
 

where b0  and b1  are unknown model parameters that represent the y-intercept and slope, 
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respectively, of a straight line that summarizes the relationship between the two diameter 
measurements. The parameters b0 and b1 are estimated based on the available data. 

Fitting a regression model (see Appendix E) to the data gives: 

Regression Analysis: diameter after OP310 versus diameter after OP270 

The  regression  equation  is 
diameter  after  OP310  =  64.3  +  0.884  diameter  after  OP270 

 

Predictor Coef SE Coef T P 
Constant 64.27 22.29 2.88 0.005 
diameter 0.88358 0.03739 23.63 0.000 

 

S  =  1.224 R-Sq = 85.6% R-Sq(adj) = 85.4% 
 

Analysis of Variance 
 

Source DF SS MS F P 
Regression 1 836.67 836.67 558.58 0.000 
Residual Error 94 140.80 1.50   
Total 95 977.47    

 

The estimated model parameters for b0 and b1 are given as 64.3 and 0.884, respectively. 
The estimated slope parameter (0.884) can be interpreted as the change in the average diam- 
eter after Operation 310 for every unit change in the diameter after Operation 270. Often, as 
in this example, the y-intercept parameter estimate will have no useful interpretation, since 
it tells us the average diameter after Operation 310 if the diameter after Operation 270 is 
zero. The regression equation is a straight line that best summarizes the relationship between 
the piston diameters after Operation 270 and Operation 310. As we see in Figure S11.7, in 
this case the relationship is strong. The value of s = 1.224 from the MINITAB output is an 
estimate of the standard deviation in the final diameter if we hold the diameter after 
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Figure S11.7 Plot of final diameter versus diameter after Operation 270. 
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Figure S11.8 Plot of final diameter versus diameter after Operation 200. 
 
 

Operation 270 fixed. We can compare this standard deviation to the baseline value 3.32 to 
determine that the input (in this case the diameter after Operation 270) is a dominant cause. 

In the same example, we can also fit a regression model using the diameter after 
Operation 200 as the input. From MINITAB, we get the plot in Figure S11.8 and the fol- 

lowing numerical results: 

Regression Analysis: diameter after OP310 versus diameter after OP200 

The  regression  equation  is 
diameter  after  OP310  =  225  +  0.325  diameter  after  OP200 

 

Predictor Coef SE Coef T P 
Constant 225.12 72.72 3.10 0.003 
diameter 0.32542 0.06467 5.03 0.000 

 

S  =  2.862 R-Sq = 21.2% R-Sq(adj) = 20.4% 
 

From these results, it is clear that the relationship between the diameter after Operation 
200 and the final diameter (after Operation 310) is much weaker than between the diame- 
ter after Operation 270 and the final diameter. In the second regression model, the estimate 
of the residual variation, s = 2.862, is close to the baseline standard deviation 3.32. If we 
were to hold the diameter at Operation 200 fixed, we would see little change in the variabil- 
ity after Operation 310. We can rule out all causes that act up to and including Operation 
200 as possible dominant causes of final diameter variation. 

 
Comments 

In the context of variation transmission investigations, we do not recommend fitting a 
regression model to try to explain the final output as a function of two or more intermedi- 
ate output measurements. Strong correlation between the inputs in the regression model 
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(that is, the intermediate diameter measurements) makes interpretation of the results difficult. 
The residual variation (given by s in the MINITAB results) would estimate the residual 
standard deviation if we could hold all the inputs fixed. 

We use regression models in Chapter 12 and discuss them further in the supplement to 
Chapter 12. 

 
S11.4 OTHER COMPONENT-SWAPPING INVESTIGATIONS 
In Chapter 11, we propose what we believe is the preferred plan, in most circumstances, for 
comparing component families. Dorian Shainin first proposed an alternative component- 
swapping plan in 1956. More recently the method has been promoted and discussed by Shainin 
and Shainin (1988a), Amster and Tsui (1993), Ingram (1993), and Bhote and Bhote (2000). 
Cotter (1979) provides some motivation for the Shainin type of component-swap experiments. 

We consider the four-stage Bhote and Bhote (2000) version here. The four stages are 
confirmation, elimination, capping, and analysis. There are complicated rules for dealing 

with all possible eventualities that we do not repeat here. 
To start, we choose two units with extreme and opposite performance. In the confirmation 

stage we check that repeated disassembly and reassembly does not affect performance. We use 
this stage to confirm that a dominant cause lies in the component rather than the assembly 
family of causes. This matches the procedure described in Section 10.4. 

We start the elimination stage by ranking the components in descending order of likely 
importance. Then, we swap components between the two extreme parts, one at a time, starting 
with the most likely. After each swap, we determine the performance of the two assemblies. If 
the low and high output assemblies remain unchanged, we swap back the particular component 
and move on to swap the next most likely component. If the performance of the two units fol- 
lows the swapped component, we have found the component family that is the home of a dom- 
inant cause and we can move to the final stage. If the performance partially moves with 
swapped component, we continue swapping with that particular component identified as part 
of a dominant cause involving two or more inputs. 

When a dominant cause involving two components has been tentatively identified, we 
move to the capping stage. The capping run involves simultaneously swapping the two 
components identified as important. If the performance follows the double swap, the dom- 
inant cause is an interaction between two inputs with one in each component. 

The final stage is called the analysis stage. In the analysis stage, no more swaps are con- 
ducted. The existing results are summarized graphically in 2 ⋅ 2 tables to determine the 
magnitude and direction of the effects. 

 
Comments 

With the Bhote and Bhote (2000) procedure, the length of the search depends on engineering 
judgment regarding which components are likely to be most important. Also, Amster and 
Tsui (1993) provide some examples of when the Bhote and Bhote method would yield 
incorrect conclusions. 

As suggested by Tippett (1934), Taguchi (1987), and Parmet and Steinberg (2001), we 
could also conduct a component-swapping experiment without using the idea of leveraging; 
that is, by choosing components from regular production. This strategy requires considerably 
more pairs of parts and a greater number of disassemblies and reassemblies. 
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The Bhote and Bhote (2000) component swap procedure matches the factorial compo- 

nent swap experiment as described in the next section, where we do not conduct all swaps 
once we believe the results are clear. 

We believe iteratively forming two groups of components and using the method of 
elimination is a more efficient strategy (see Section 11.3). 

 
S11.5 COMPONENT-SWAPPING WITH THREE GROUPS OR 

SUBASSEMBLIES 

Here we look at component swap investigations with three groups. This may be useful if 
the assembly naturally divides into three subassemblies. We suppose for the moment that 
the three groups make up the entire assembly and that we have not yet eliminated any com- 
ponents as the home of the dominant cause. 

We consider a component swap investigation as a factorial experiment, regardless of 
the number of groups. See Chapter 13 for a full discussion of factorial exeriments.We label 
the groups of components based on whether they come from the assembly that originally 
gave a low or high output. For instance, a component swap investigation with two groups, 
as presented in Chapter 11, corresponds to a (full) factorial experiment with two inputs, 
two levels for each input, and four treatments: 

 

Treatment G1 G2 

1 Low Low 

2 Low High 

3 High Low 

4 High High 

Treatments 1 and 4 correspond to the two original assemblies and treatments 2 and 3 cor- 
respond to swapping the components in G1 (or G2) between the two assemblies. 

With three groups of components, we disassemble and reassemble to get all eight pos- 
sible combinations: 

 

Treatment G1 G2 G3 

1 Low Low Low 

2 Low Low High 

3 Low High Low 

4 Low High High 

5 High Low Low 

6 High Low High 

7 High High Low 

8 High High High 
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Treatments 1 and 8 correspond to the original assemblies. Since a swap of components 
corresponds to two runs of the experiment, the proposed plan is equivalent to conducting 
three swaps. 

We can summarize the results of component swap experiments using two 2 ⋅ 2 tables, 
similar to those shown in Chapter 11. The eight cells correspond to the eight treatments. 

Had we used three groups in the power window buzz example described in Chapter 11, 
we would have to start: 

 
 

  
 

We fill the other six cells of the table with the results from three swaps. We might get: 
 

  
 

Here, since the results in the two tables are similar, we can eliminate all the components in 
G3 and interpret the result in either table as in Chapter 11. In this example, the dominant 
cause acts in G2. 

To help us make the correct interpretation, we can generate three pairs of tables similar 
to the previous set using a different group to stratify the pair of tables. If none of the three 
pairs of tables gives similar results across the two 2 ⋅ 2 tables, the dominant cause involves 
a component (or more than one) in each of the three groups. This is unlikely. 
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S12.1 MATRIX SCATTER PLOTS AND DRAFTSMAN PLOTS 

To analyze the results of a group comparison investigation, we create plots of each of the 
inputs stratified by the two possible values of the output. This can be done using a series of 
box plots, where we select the option to plot the individual data points. To look simultane- 
ously at two inputs, we create scatter plots of one input versus the second using a different 
plotting symbol for each of the two groups as defined by the output value. The number of 
such plots can be large. 

In examples such as the window leak problem described in Chapter 12, where the number 
of inputs is less than 10, we can use a matrix scatter plot (see Appendix C) of all pairs of 
the (continuous) inputs. We give such a plot in Figure S12.1, where leakers are denoted by 
circles and nonleakers by plus signs. The plot in the right panel of Figure 12.2 is in the lower 
left corner of the matrix scatter plot in Figure S12.1. If the number of plots in the matrix 
scatter plot is too large, we find it difficult to see any patterns. 

In input/output investigations, we want to examine scatter plots of the (continuous) 
output versus each of the inputs. In MINITAB, we can use a draftsman plot (see Appendix C) 
to automatically create all the desired scatterplots. Consider the crossbar dimension exam- 
ple described in Chapter 12. Figure S12.2 gives the draftsman plot with crossbar dimension 
and the five inputs. The left panel of Figure 12.3 is given in the middle of the draftsman plot. 

With a large number of inputs, the aspect ratio of the draftsman plot makes interpreta- 
tion difficult. 
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Figure S12.1 Matrix scatter plot for window leaks group comparison (leakers are denoted by 
o and nonleakers by +). 

 

In output/input investigations with large numbers of inputs, examining all the scatter 
plots can be tedious, even when using a draftsman plot. In this context, another useful tool in 
MINITAB is best subsets regression (see Appendix E). With best subsets regression, we can 
ask MINITAB to fit all possible regression models involving a single input (or larger numbers 
of inputs, but that is not needed in this context). The results rank the possible models by the 
estimated residual standard deviation s. For illustration, results from using the best subsets 
regression routine for the crossbar dimension example are: 

 
Best Subsets Regression: dimension versus die temp, nozzle temp, ... 

 
Response is dimension 
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1 78.9 78.3 2.9 0.25439   X  
1 14.8 12.6 121.0 0.51123     X 
1 8.2 5.8 133.1 0.53061    X  
1 0.8 0.0 146.9 0.55174  X    
1 0.1 0.0 148.1 0.55353 X     

 

We see that barrel temperature is a dominant cause, because the residual standard deviation 
for the model with barrel temperature is so small relative to the baseline value of 0.46. 

In the crossbar dimension example, there are only five inputs. Using best subsets regression 
is unnecessary, since we get the same information from Figure S12.2. One danger with relying 
on the best subsets regression is that the models are ranked according to how well a linear 
model fits the data. As a result, nonlinear relationships may be missed. We strongly recom- 
mend that you look at all of the scatter plots of the output versus the selected inputs. 

 
 
 
 
 
 
 

1.39630 
 
 
 
 
 
 
 
 
 
 

0.35806 
 
 
 
 
 
 
 
 

Die temp Nozzle temp Barrel temp Hydraulic pressure    Cavity pressure 

 
 

Figure S12.2   Draftsman plot for crossbar dimension regression investigation. 
 
 

S12.2 GROUP COMPARISON VERSUS PAIRED COMPARISON 

Bhote and Bhote (2000) promote a plan and analysis tool they call paired comparison, 
sometimes referred to as group comparison. The tool is similar to the proposed group 
comparison method discussed in Section 12.1. Like group comparison, the goal of paired 
comparison is to compare the effects of a number of inputs for parts with binary output. 
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There are some important differences in the two methods. First, in the paired com- 

parison, a hypothesis test based on end-count is recommended to compare the two 
groups of parts. As discussed in the supplement to Chapter 10, we do not believe that 
formal hypothesis tests are necessary or appropriate when searching for a dominant 
cause of variation. Significant differences do not (necessarily) correspond to dominant 
causes. 

A second difference is that paired comparison involves an arbitrary pairing of the parts, 
one from each group. In the search for the dominant cause, pairing makes little sense. Since 
the causes of variation are unknown, determining how to pair is problematic. In addition, the 
goal of the comparing extreme parts is to help identify a dominant cause of variation in the out- 
put. If we pair in such a way that a dominant cause is held constant within the pairs, the 
analysis will fail to identify the dominant cause. With artificial pairing, the analysis results 
depend on the way pairs are produced. 

We do not recommend paired comparison as an alternative to group comparison. 
 

S12.3 REGRESSION EXTENSIONS 

Regression is a flexible analysis tool that can be extended and generalized in many ways. 
We consider a few useful extensions here. 

Regression models can be used to analyze the designed experiments we encounter in 
Chapter 13. They are especially useful if, for example, we lose a run and the resulting 
experimental data are not balanced. The general linear model ANOVA option in MINITAB 
is based on fitting a regression model. Regression models can also be useful when assess- 
ing the feasibility or implementing a feedforward control. 

 
Multiple Regression Model 

We can fit regression models with more than one input, although in a search for a dominant 
cause, we do not, as a general rule, look at inputs simultaneously. If we think there is a 
dominant cause that involves two or more inputs, we may fit a model with all inputs or all 
pairs of inputs using best subsets regression. We may also add terms to a model if we sus- 
pect there is an nonlinear input/output relationship, as in the manifold sand scrap example 
in Chapter 12. 

We are interested in understanding the remaining output variation if the input or inputs 
in the regression model are held fixed. This is given by the residual standard deviation. 
Whenever we consider including more than one input in a regression model, we need to 
consider the form of the model. We call this model building. An experienced analyst should 
conduct regression model building. Modeling assumptions can be checked using residual 
plots based on the estimated residuals from a regression model (Montgomery et al., 2001; 
Box et al., 1978). The estimated residuals are defined as the difference between the observed 
output value and the value predicted by the regression model. 
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Categorical Inputs and Indicator Variables 

Suppose we have a categorical input x, such as a machine with three values: A, B, C or 0, 
1, 2. We cannot use this input directly in a regression model. Instead, we replace x with two 
indicator variables. Let xB = 1 if the part is from machine B; otherwise, let xB = 0. Also, let 
xC = 1 if the part is from machine C; othewise, let xC = 0. We know that if xB = 0 and xC = 0, 
then the part is from machine A. Now we include xB and xC in the regression model. 

In general, we use k – 1 indicator variables if there are k categories. (See Montgomery 
et al., 2001, for more detailed discussion.) 

 
Logistic Regression for Binary Outputs 

Regression analysis can be relatively easily extended to handle binary outputs. Logistic 
regression is one example (Hosmer and Lemeshow, 2000). See the MINITAB regression 
menu. Logistic regression can be a useful alternative or complement to the graphical group 
comparison analysis described in Chapter 12. Logistic regression analysis may be helpful 
when the group sizes are large. 

 
Other Regression Extensions 

Another useful extension is regression with count data (Cameron and Trivedi, 1998). Both 
logistic regression and regression with count data are special cases of generalized linear 
models (McCullagh and Nelder, 1989; Hamada and Nelder, 1997). 
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S13.1 UNDERSTANDING REPEATS AND REPLICATES 

There is great confusion about the difference between replicates and repeats. Replicates are 
different runs with the same treatment. Repeats are different parts within a run. The meas- 
ured output values on repeats vary due to causes that act within a run. Between replicates, 
the measured output values vary because of causes that act both within runs and from run 
to run. 

In traditional applications of experimental design, the experimenters do not know the 
within-treatment variation and hence need an estimate from within the experiment itself. 
If there are no replicates and they calculate an estimate based on the variation of the repeats 
within each run, they are almost certain to underestimate the within-treatment variation. As 
a consequence, they are likely to conclude a suspect cause is dominant when it is not. 

The same problem occurs when we use an experiment to assess the effects of changing one 
or more fixed inputs in Chapter 15, where we search for an adjuster to move the process center. 
We start the analysis in Chapter 13 (and in later uses of factorial experiments) by plot- ting 
the output values by treatment. To make this plot, we find it convenient to store the data with 

one row for each repeat. The plot includes output values from both replicates and 
repeats. We use the plots to look for large effects and promising treatments. We include 
horizontal lines showing the full extent of variation on the plot to get an assessment of the 

performance of the process with each treatment. 
In the analysis for full factorial designs (and later fractional factorial designs—see 

Chapter 15), we use ANOVA to calculate, plot, and rank the effects of the inputs and their 
interactions. These calculations and plots are correct as long as the experimental design is 
(close to) balanced in terms of replicates and repeats (that is, there are the same number of 
runs per treatment and the same number of repeats per run) as we recommend. However, 
because of the way we have stored the data, the ANOVA program cannot separate repli- 
cates from repeats and hence the internal estimate of the within-treatment variation, 
derived from the residual variation, is too small. As a consequence, the formal hypothesis 
tests given in the output may to be misleading. 
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S13.2 RANDOMIZATION, REPLICATION, AND BLOCKING 

Suppose we plan to verify a single suspect as a dominant cause. In making the decision to 
verify, we are implicitly or explicitly concerned about some other cause, identified or not, 
that acts in the same family as the suspect. We want to conduct the experiment to confirm 
the suspect and rule out any other possibility. 

We say that other causes in the same family as the suspect are confounded with the suspect. 
That is, the pattern of behavior that we have seen in the output (in the observational investigations 
used in the search for a dominant cause) can be explained by the suspect or by some other mem- 
ber in the same family. In the verification experiment, we want to eliminate confounding. 

Blocking is one tool that we can use to prevent confounding. If we hold the other mem- 
bers of the family fixed and change only the suspect, and if the output varies over its full 
extent, we know that the suspect is the dominant cause. For example, suppose the suspect 
is in the hour-to-hour family; that is, it changes relatively slowly. We can rule out other 
members of the family by changing the suspect quickly, say from one part to the next. From 
part to part we know that the other members of the hour-to-hour family are not changing 
much. This is blocking. By holding other possible causes fixed and varying the suspect, we 
can verify that the suspect is a dominant cause. Note that in other contexts blocking is used 
to increase the precision of the conclusions. 

Sometimes we need more than blocking because we do not know how to hold all of the 
other causes in the suspect family fixed. For example, in the truck water leak example, a 
suspect was identified as an interaction between a gap and the plastisol application. These 
suspect inputs vary from truck to truck in a haphazard pattern. Many other inputs associ- 
ated with any of the body components, the window, and the assembly vary in the same way. 
These causes had not been ruled out in the group comparison discussed in Chapter 12. We 
can use blocking to hold the body components fixed. That is, we use one truck and change 
the plastisol application and the gap with a different window. Using a single truck keeps all 
of the body components fixed. However, the causes in the assembly and window family 
change as we change the gap and plastisol levels. 

We use randomization and replication to reduce the risk of confounding. For example, we 
select a number of trucks, say 10, and for each truck we change the plastisol and gap as 
described previously. Now we have 10 blocks. For each truck, we apply the four treatments in 
a random order. This random ordering over the 10 trucks will, with high probability, break the 
link between changes in the treatments and changes in other causes in the assembly family. 

We use 10 different pairs of windows (one with a large gap and one with a small gap) to 
change the gap. There are other causes in the window family that match changes in the gap. 
We may be fooled in identifying the gap as a dominant cause when, in fact, there is some 
other characteristic of the window that is the cause. We accept this risk here because it is 
difficult to change the gap except by selecting the appropriate windows. 

Randomization is likely to be effective only if there is sufficient replication—we rec- 
ommend at least three runs at each level of the suspect and preferably five or more runs. 
Repeats are not helpful in reducing the risk of confounding, since their order cannot be 
randomized across runs. 
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S13.3 VARIABLES SEARCH 

Bhote and Bhote (2000) highly recommend variables search for finding a dominant cause 
if there are five or more suspects. With fewer suspects, they recommend a full factorial 
experiment. Variables search competes with fractional factorial designs—see Chapter 15 
and its supplement (also Shainin and Shainin, 1988). 

With variables search, we conduct an experimental investigation using a procedure simi- 
lar to component swap, as described in Chapter 11. We start with: 

• A list of suspects ranked in order of expected importance 

• Two levels for each suspect chosen at the extremes of their usual range of values 

• Two treatment combinations that produce output that spans most of the full 
extent of variation 

In the next stages, we swap levels of the suspects in a series of experimental runs starting 
with the highest-ranked suspect. The variables search method focuses on finding high-order 
interactions. 

We cannot recommend variable search because: 

• The length of the search depends on how well we order the suspects. 

• All suspects not yet ruled out must be held fixed at one of the two levels for 
each run of the experiment. With a large number of suspects, all of which 
normally vary, this can be a daunting task. 

• Substantial effort is required to find the initial two treatments that produce 
output that spans the full extent of variation. No direction is given on how to 
find these treatments. 

See Ledolter and Swersey (1997a) for a critical view of variables search. We believe 
there is no good experimental plan when the list of suspects is long. Rather, we recommend 
continuing to use the method of elimination until the number of suspects is small. 
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S15.1 FRACTIONAL FACTORIAL EXPERIMENTS 

We give a brief description of the planning and analysis of fractional factorial experiments. 
We discuss only two-level fractional factorial designs and rely heavily on MINITAB. For a 
more complete description see Montgomery (2001); Box, Hunter, and Hunter (1978); or 
Wu and Hamada (2000). See Appendix F for details on how to set up the designs and conduct 
the analysis in MINITAB. 

We use fractional factorial designs to estimate the effects of a number of inputs (usually 
four or more) simultaneously when the number of experimental runs is limited. In the lan- 
guage of factorial designs, inputs are called factors and the values used in the experiment 
are called the levels of the inputs. A treatment or a treatment combination is a set of particular 
levels, one for each input, that can be used to run the process. 

We find it helpful to present the experimental plan using a code of –1 and +1 for the 
two levels of each input. To illustrate, consider the brake rotor balance verification experi- 
ment discussed in Chapter 13. This experiment was a full factorial design but we use it here 
to show how the coding works. We denote the inputs by the letters A, B, and C, as shown in 
Table S15.1. 

We can represent any treatment combination using the code for each input. We list the 
eight possible treatments in Table S15.2. We call this plan a 23 design, because there are 
three inputs each at two levels and there are 23 = 8 treatments used in the experiment. 

 
 

Table S15.1  Input levels and coding for brake rotor verification 
experiment. 

 

Input (factor) Label Low level (–1) High level (+1) 

Tooling A Old tooling New tooling 

Core position B Offset Nominal 

Thickness variation C 30 thousandths Nominal 
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Table S15.2 A list of all possible 
treatments in a 23 design. 

 

Treatment A B C 

1 –1 –1 –1 

2 –1 –1 +1 

3 –1 +1 –1 

4 –1 +1 +1 

5 +1 –1 –1 

6 +1 –1 +1 

7 +1 +1 –1 

8 +1 +1 +1 
 

We generate the additional columns in Table S15.3 by multiplication. First we look at 
how this works and then we provide an interpretation. To get the AB column, for example, 
we multiply the corresponding plus or minus ones for each row in the table using the A and 
B columns. We repeat this calculation to get four additional columns corresponding to the 
products AB, AC, BC, and ABC. Note that we have put the columns in a standard order. We 
call the seven columns in Table S15.3 the contrast matrix for the 23 design. Taguchi (1987) 
calls this matrix an orthogonal array and labels it L8. 

We can calculate all the effects using the contrast matrix and the output from the 
experiment. In Table S15.4, we add one extra column that gives the output value for each 
treatment in the experiment. Here we assume there is a single run of the experiment cor- 
responding to each treatment. With replication (that is, more runs), we replicate the rows 
in the contrast matrix. Note that the treatments in the contrast matrix are written in a specific 
order and the runs in the experiment likely occur in a different random order. 

 
 

Table S15.3 Contrast matrix for the 23 design. 
 

Treatment A B AB C AC BC ABC 

1 –1 –1 +1 –1 +1 +1 –1 

2 –1 –1 +1 +1 –1 –1 +1 

3 –1 +1 –1 –1 +1 –1 +1 

4 –1 +1 –1 +1 –1 +1 –1 

5 +1 –1 –1 –1 –1 +1 +1 

6 +1 –1 –1 +1 +1 –1 –1 

7 +1 +1 +1 –1 –1 –1 –1 

8 +1 +1 +1 +1 +1 +1 +1 
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Table S15.4 Contrast matrix for the 23 design with output data. 
 

Treatment A B AB C AC BC ABC Weight 

1 –1 –1 +1 –1 +1 +1 –1 0.56 

2 –1 –1 +1 +1 –1 –1 +1 0.17 

3 –1 +1 –1 –1 +1 –1 +1 0.44 

4 –1 +1 –1 +1 –1 +1 –1 0.08 

5 +1 –1 –1 –1 –1 +1 +1 1.52 

6 +1 –1 –1 +1 +1 –1 –1 0.37 

7 +1 +1 +1 –1 –1 –1 –1 1.34 

8 +1 +1 +1 +1 +1 +1 +1 0.03 
 

Recall from Chapter 13 that the main effect of a particular input is the difference 
between the average output over runs at the high level and the average output over runs at 
the low level of the input. In the example, the main effect of A is 

 

 
1.52 0.37 1.34 0.03 0.56 0.17 0.44 0.08

4 4
+ + + + + +

−  (S15.1) 

 = 
0.56 0.17 0.44 0.08 1.52 0.37 1.34 0.03

4
− − − − + + + +

 = 0.5025 

We have changed the order of the terms in the sum of the second expression in this 
calculation to match the treatment order in Table S15.4. In terms of the contrast matrix, to 
get the numerator of Equation (S15.1), we apply the signs from column A to the data (that 
is, multiply the two columns element by element) and add. 

To find an interaction effect, we compare the main effects for one input at the two different 
levels of a second input. For example, to look at the AC interaction, we have 

 

when C = +1, the effect of A is 
0.37 0.03 0.17 0.08

2 2
+ +

− , and 

when C = −1, the effect of A is 1.52 + 1.34 
− 

0.56 + 0.44 
2 2 

 

The interaction effect is half the difference. That is, 
 

0.37 0.03 0.17 0.08 1.52 1.34 0.56 0.44
2 2 2 2
+ + + +   − − −      

 

 

 = 0.56 0.17 0.44 0.08 1.52 0.37 1.34 0.03
2

− + − − + − +  = –0.4275 (S15.2) 
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Table S15.5 Contrast matrix for the 23 design with estimated effects. 
 

Treatment A B AB C AC BC ABC Weight 

1 –1 –1 +1 –1 +1 +1 –1 0.56 

2 –1 –1 +1 +1 –1 –1 +1 0.17 

3 –1 +1 –1 –1 +1 –1 +1 0.44 

4 –1 +1 –1 +1 –1 +1 –1 0.08 

5 +1 –1 –1 –1 –1 +1 +1 1.52 

6 +1 –1 –1 +1 +1 –1 –1 0.37 

7 +1 +1 +1 –1 –1 –1 –1 1.34 

8 +1 +1 +1 +1 +1 +1 +1 0.03 

Effect 0.503 –0.182 –0.078 –0.803 –0.428 –0.033 –0.048  

Again we have reordered the terms in the numerator of the second expression in Equa- 
tion (S15.2) and you can see that to get this sum, we apply the signs from the AC column 
of the contrast matrix to the data and add. 

All main effects and interactions can be found by applying the signs from the appropri- 
ate column of the contrast matrix to the data, adding, and then dividing by half the number of 
runs. Every effect is the difference of two averages, where each average includes exactly half 
the data. We show all of the effects in Table S15.5, where we add an extra row to Table S15.4. 
In the analysis, we look for large (positive or negative) effects. For two-level factorial and 

fractional factorial designs, MINITAB will calculate and rank the absolute value of the 
effects in a Pareto diagram. We can use this diagram to isolate large effects. The effects in 
the example are plotted in Figure S15.1. We see that the main effects of C and A are rela- 
tively large, as is the interaction effect AC. Since there is evidence of interaction, we look 

at the effects of A and C simultaneously. 
We now use the contrast matrix to explain fractional factorial designs. As an example, 

we start with the contrast matrix for a 24 design, that is, a design with four inputs each at 
two levels. We give the contrast matrix in Table S15.6. Note the order of the columns. 

 
 

C 

A 

AC 

B 

AB 

ABC 

BC 

A: A 
B: B 
C: C 

0.0   0.1   0.2   0.3   0.4   0.5   0.6   0.7    0.8 

 
 

Figure S15.1 Pareto chart of effects in rotor balance experiment. 



 

 
 
 
 
 
 
 
 
 

 

Table S15.6 Contrast matrix for a 24 design. 
 

Treatment A B AB C AC BC ABC D AD BD ABD CD ACD BCD ABCD 

1 –1 –1 +1 –1 +1 +1 –1 –1 +1 +1 –1 +1 –1 –1 +1 

2 –1 –1 +1 –1 +1 +1 –1 +1 –1 –1 +1 –1 +1 +1 –1 

3 –1 –1 +1 +1 –1 –1 +1 –1 +1 +1 –1 –1 +1 +1 –1 

4 –1 –1 +1 +1 –1 –1 +1 +1 –1 –1 +1 +1 –1 –1 +1 

5 –1 +1 –1 –1 +1 –1 +1 –1 +1 –1 +1 +1 –1 +1 –1 

6 –1 +1 –1 –1 +1 –1 +1 +1 –1 +1 –1 –1 +1 –1 +1 

7 –1 +1 –1 +1 –1 +1 –1 –1 +1 –1 +1 –1 +1 –1 +1 

8 –1 +1 –1 +1 –1 +1 –1 +1 –1 +1 –1 +1 –1 +1 –1 

9 +1 –1 –1 –1 –1 +1 +1 –1 –1 +1 +1 +1 +1 –1 –1 

10 +1 –1 –1 –1 –1 +1 +1 +1 +1 –1 –1 –1 –1 +1 +1 

11 +1 –1 –1 +1 +1 –1 –1 –1 –1 +1 +1 –1 –1 +1 +1 

12 +1 –1 –1 +1 +1 –1 –1 +1 +1 –1 –1 +1 +1 –1 –1 

13 +1 +1 +1 –1 –1 –1 –1 –1 –1 –1 –1 +1 +1 +1 +1 

14 +1 +1 +1 –1 –1 –1 –1 +1 +1 +1 +1 –1 –1 –1 –1 

15 +1 +1 +1 +1 +1 +1 +1 –1 –1 –1 –1 –1 –1 –1 –1 

16 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 
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Suppose we want to conduct an experiment and we can afford only 16 runs. With four 
inputs, A, B, C, and D, we can run all treatments. The four columns labeled A, B, C, and D 
give the levels of the four inputs for each treatment. If, however, we have a fifth input, E, 
there are 32 possible treatments and we have the resources to conduct an experiment using 
only half of the possible treatments. The question is, which half? The resulting design is 
often referred to as a 25–1 design since we are using the half fraction (2–1) design with five 
inputs at two levels each. 

One possibility is to assign E to the column denoted ABCD in the contrast matrix in 
Table S15.6. Then, we can read the 16 treatments we will use in the experiment by looking 
at the five columns labeled A, B, C, D, and E. For example, with treatment 7, we have the 
levels A: –1, B: 1, C: 1, D: –1, E: 1. With this choice for E, exactly half the 16 runs have E 
at the high level, that is, E = +1, and the other half have E at the low level, that is, E = –1. 
The same is true for the other four inputs. 

To see the consequences of this choice, suppose we carry out the experiment and meas- 
ure the output for each of the selected 16 treatments. We can calculate the main effects of 
each of the five inputs by applying the appropriate column of plus and minus ones to the 
data, adding and dividing by eight. We carry out the same calculation for every column. 

To calculate the effect of the four-input interaction ABCD and the main effect for E, we 
use the same column of the contrast matrix and we say these two effects are confounded. If 
the calculated effect is large, this may be due to the change in input E or the four-input 
interaction involving inputs A, B, C, and D. We cannot separate these two effects using the 
data. However, we usually assume that three- and four-input interaction effects are small 
and so, in this case, we would attribute the large effect to the main effect of E. 

You should be wondering by now where to find the interactions involving E. To find the 
two-input interaction AE, we multiply the A and E columns as before. We found the column 
of signs for E by multiplying the corresponding columns for A, B, C, and D. We use the 
convenient notation E = ABCD. Hence we have 

 
AE = A ⋅ ABCD = BCD 

 

since, if we multiply column A by itself, we get a column of plus ones, which has no effect 
on the overall product. In other words, the interaction effect AE is confounded with the 
three-input interaction BCD. If this column produces a large effect, we cannot tell if this is 
due to AE or BCD. Again we will attribute the effect to the lower-order interaction—in this 
case, the two-input interaction AE. 

You can quickly find all other two-input interactions involving E. Every column of the 
contrast matrix corresponds to two effects (since we used a half fraction design). MINITAB 
will produce a list of the confounded effects for the design. For the example, the list of 
confounded effects (MINITAB calls these effects aliases) is: 

 
Design Generators:  E = ABCD 

Alias    Structure 
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I + ABCDE 
 

A + BCDE 
B + ACDE 
C + ABDE 
D + ABCE 
E + ABCD 
AB + CDE 
AC + BDE 
AD + BCE 
AE + BCD 
BC + ADE 
BD + ACE 
BE + ACD 
CD + ABE 
CE + ABD 
DE + ABC 

 

Any effects in the same row, linked by a + or –, are confounded. See Appendix F for 
instructions on how to create this list. You might also wonder what happens if we start by 
assigning E to a different column, say E = ABC. Since the ABC column gives the level of 
E for each run, we now have a different set of 16 treatments. We use MINITAB to produce 
the list of confounded effects. This time, we ask that four- and five-input interactions be 
suppressed. The confounded effects with this design are: 

Design Generators:  E = ABC 

Alias  Structure  (up  to  order  3) 

I 
A + BCE 
B + ACE 
C + ABE 
D 
E + ABC 
AB + CE 
AC + BE 
AD 
AE + BC 
BD 
CD 
DE 
ABD + CDE 
ACD + BDE 
ADE + BCD 
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Table S15.7   Design resolution interpretation. 
 

Resolution Meaning 

III Main effects are confounded with two-input 
interaction effects 

IV Main effects are confounded with three-input 
or higher-order interactions, and two-input 
interaction effects are confounded with other 
two-input interaction effects 

V Main and two-input interaction effects 
are confounded only with three-input or 
higher-order interactions 

 

With this choice, we see that main effects are confounded with three-input interactions 
and, more important, pairs of two-input interactions such AB and CE are confounded. This 
plan is less desirable than the design based on assigning E to ABCD. 

We say that the design with E = ABC has resolution IV, because at least one pair of 
two-input interactions is confounded. If we assign E to column AB, then a main effect is 
confounded with a two-input interaction and the design has resolution III. The first design 
discussed earlier with E = ABCD has resolution V. The higher the resolution, the less likely 
it is that important effects will be confounded. We summarize the meaning of resolution in 
Table S15.7. 

For a fixed number of runs, the greater the number of inputs, the lower the highest possible 
resolution (see Figure S15.2). 

In using MINITAB, we normally assign the letters A, B, C, and so on to the candidates 
and +1 and –1 to the two levels for each. It does not matter which letter is assigned to each 
candidate. Then we ask MINITAB to generate the design, a worksheet of the treatments 
selected for the experiment. Sometimes we want to ensure that one particular treatment is 
included in the experiment—for example, the current process levels of the candidates. In 

 
 

 
 

 

Figure S15.2 Two-level factorial experiments available in MINITAB. 
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Center point 
(0,0) 

 

this case, we generate the design first and then assign the letters and levels so that one of 
the treatments in the design has the required levels. 

We recommend an analysis based on a plot of the output by treatment number, the 
Pareto plot of the effects, and main effect and interaction plots. MINITAB will produce the 
table of confounded effects to help interpret the important effects. 

Despite the confounding, factorial experiments are useful because of the scarcity of 
effects principle, which states that when there are many inputs, there are likely only a few 
large effects. These effects are commonly the main effects and low-order interactions. 

 

Resolving Confounded Effects 

In fractional factorial experiments, all effects are confounded with at least one other effect. In 
some circumstances, to strengthen the conclusions from the experiment, we conduct addi- 
tional runs with new treatments to break the confounding for important effects. This is espe- 
cially necessary if the confounded effects are interactions of the same order. Simple follow-
up experiments that use fold-over are covered in Montgomery (2001). A more sophis- ticated 
method is given in Meyer et al. (1996). Typical follow-up experiments involve 8 or 16 runs, 
depending on the number of inputs and degree of fractionation used in the initial design. 

 

Use of Center Points 

If the inputs are quantitative (that is, speed, voltage, amount, and so on), we have the option 
of adding center points to the design. The level of each input at the center point is the average 
of the high and low values. We illustrate the center point for a design with two inputs at two 
levels in Figure S15.3. MINITAB allows the addition of center points to factorial or frac- 
tional factorial designs with quantitative inputs. 

When we add a center point to the design, we can check to see if there is curvature in 
the main effect of one or more of the inputs. The curvature may be important if we plan to 
use the input as an adjuster. The addition of the center point does not change the confound- 
ing of the effects in a fractional design. For more detail, see Montgomery (2001). 
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Figure S15.3 A 22 design with center point. 
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Summary 

Most issues in the planning of fractional factorial experiments are the same as for full 
factorial experiments. We need to 

• Choose the k inputs and their levels 

• Define a run 

• Use MINITAB to select the design (that is, choose the treatments, a fraction of 
all of the possibilities), mindful of the tradeoff between resolution and number 
of runs 

• Randomize the run order 

The choice of fraction is based on cost considerations and concerns about confounding. 
In fractional factorial experiments, every effect will be confounded with one or more other 
effects. We choose the design with the highest possible resolution to minimize problems 
associated with confounded effects. That is, we choose a design so that main effects and 
two-input interactions are confounded with high-order interactions as much as possible. If we 
find large effects, we typically attribute the effect to the main effect or two-input interaction. 

MINITAB can help plan and analyze fractional factorial experiments. The complete 
confounding structure for any fractional factorial design is given by MINITAB. Your task 
is to assign the inputs and levels to the generic letters A, B, C, and so on, and the codes –1 

and +1 to produce the design. 



 

 

Chapter 16 Supplement 
Desensitizing a Process to Variation in 

a Dominant Cause 
 
 
 

S16.1 MATHEMATICAL REPRESENTATION OF PROCESS 
DESENSITIZATION 

We can demonstrate process desensitization using a regression model. In the model given 
by Equation (S16.1), Y is the value of the output, X is the level of the dominant cause, c is 
the level of the desensitization candidate (here assumed to be quantitative), and the term R 
represents the (small, since X is a dominant cause) residual effect of all other varying 
inputs. 

 

Y = b0 + b1X + b2c + b3Xc + R 

 
which can be rewritten as 

 

Y = b0 + (b1 + b3c)X + b2c + R (S16.1) 

 
The levels of other fixed inputs determine the coefficient b0. For a given level c of the 

candidate, the coefficient b1 + b3c represents the effect of the cause X on the output. The 
standard deviation of the output is 

 

 ( ) ( ) ( ) ( )2 2 2
1 3sd Y b b c sd X sd R= + +  (S16.2)

 
assuming that the effect of the other causes, R, varies independently of the dominant cause. 
In Equation (S16.1), we have modeled the interaction between the cause X and the candidate 
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by the product term b3Xc. We see from Equation (S16.2) that the standard deviation of the 
output sd(Y) is sensitive to the level of the candidate if b3 is not equal to zero. If we can set 
c = –b1 / b3, then the effect of the dominant cause sd(X) is completely eliminated and sd(Y) 
is reduced to sd(R). 

In practice, such a simple model rarely describes the relationship amongst the inputs 
and output exactly. As well, we must estimate the coefficients b1 and b3 without error before 
we can achieve the optimal reduction of variation. 

If the candidate is binary (for example, supplier 1 or 2), then c in Equation (S16.1) can 
take only one of two possible values—for example, –1 or +1—and we choose the level of 
the candidate with the smaller value of (b  + b c)2. 

 
 

S16.2 FRACTIONAL FACTORIAL EXPERIMENTS FOR 
DESENSITIZATION 

 
In this section, we give a brief description of fractional factorial experiments specifically 
designed for desensitization of the output to the effects of a known dominant cause. See 
the supplement to Chapter 15 for more general information about fractional factorial 
designs. 

We have two types of inputs: a dominant cause and the candidates. Taguchi calls these 
the noise and control factors, respectively. The main goal of the experiment is to look for 
interactions between the cause and the candidates. 

We recommend that the two levels for the dominant cause be set at the extremes of the 
normal range of variation. If there is more than one dominant cause, then we suggest 
creating a pseudo-input with two levels to generate the full extent of variation in the output 
when the candidates are set at their original values. There is little need to use a full factorial 
design for the causes since we already know their effects. See the refrigerator frost buildup 
case in Chapter 16 for an example. 

If there are four or more candidate inputs, we can use a two-level fractional factorial 
design to determine the treatments for the candidates. To combine the two types of inputs 
(cause and candidates) into a single design, we construct a crossed design with runs at both 
levels of the cause for each combination of the candidates. 

As an example, suppose we have five candidates labeled A to E and a single dominant 
cause X, each at two levels. The total number of runs is the product of the number of 
combinations of the candidates times the number of levels of the dominant cause. Sup- 
pose we can carry out 16 runs in total. Since the dominant cause has two levels, we can 
have eight treatments. We use MINITAB to select the quarter fraction design of resolu- 
tion III for the five candidates. The combinations are shown in Table S16.1 in a random- 
ized order. 

For the crossed design, we have two runs, one at the low level and one at the high level 
of X for each treatment, as shown in Table S16.2, where the asterisks correspond to the 16 runs 
of the experiment. 
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Table S16.1 Selected treatment 
combinations for a 25–2 design. 

 

Treatment A B C D E 

1 –1 +1 –1 –1 +1 

2 –1 –1 +1 +1 –1 

3 –1 +1 +1 –1 –1 

4 +1 +1 +1 +1 +1 

5 +1 +1 –1 +1 –1 

6 +1 –1 –1 –1 –1 

7 +1 –1 +1 –1 +1 

8 –1 –1 –1 +1 +1 
 
 

 

Table S16.2 Crossed design with 16 runs. 
 

 Level of X 

Treatment A B C D E Low High 

1 –1 +1 –1 –1 +1 * * 

2 –1 –1 +1 +1 –1 * * 

3 –1 +1 +1 –1 –1 * * 

4 +1 +1 +1 +1 +1 * * 

5 +1 +1 –1 +1 –1 * * 

6 +1 –1 –1 –1 –1 * * 

7 +1 –1 +1 –1 +1 * * 

8 –1 –1 –1 +1 +1 * * 
 
 

In MINITAB, we need each row to correspond to a single run. We create the design by: 

• Pasting a copy of the eight treatments into the next eight rows of the 
spreadsheet 

• Adding a column for the dominant cause, denoted X, with eight –1s followed 
by eight +1s 

We get the columns as shown in Table S16.3. 
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Table S16.3  Crossed design with 16 runs 
displayed in rows. 

 

A B C D E X 

–1 +1 –1 –1 +1 –1 

–1 –1 +1 +1 –1 –1 

–1 +1 +1 –1 –1 –1 

+1 +1 +1 +1 +1 –1 

+1 +1 –1 +1 –1 –1 

+1 –1 –1 –1 –1 –1 

+1 –1 +1 –1 +1 –1 

–1 –1 –1 +1 +1 –1 

–1 +1 –1 –1 +1 +1 

–1 –1 +1 +1 –1 +1 

–1 +1 +1 –1 –1 +1 

+1 +1 +1 +1 +1 +1 

+1 +1 –1 +1 –1 +1 

+1 –1 –1 –1 –1 +1 

+1 –1 +1 –1 +1 +1 

–1 –1 –1 +1 +1 +1 
 

Next we use MINITAB to create a custom factorial design (see Appendix F) with the six 
inputs. We can get the confounding structure for this design before we collect the data by using 
a column of dummy output. Any set of 16 numbers will do. The given design has the following 
confounding structure, where we show only main effects and two- and three-input interactions: 

Alias  Structure  (up  to  order  3) 

I + ABD + ACE 
A + BD + CE 
B + AD + CDE 
C + AE + BDE 
D + AB + BCE 
E + AC + BCD 
X 
AX + BDX + CEX 
BC + DE + ABE + ACD 
BE + CD + ABC + ADE 
BX + ADX 
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CX + AEX 
DX + ABX 
EX + ACX 
BCX + DEX 
BEX + CDX 

 

The crossed design has the advantage that all of the two-input interactions involving 
the dominant cause X and the candidates are not confounded with any other two-input 
interactions. This is a powerful motive for using the crossed design given that the goal of the 
experiment is to examine these interactions. 

We recommend using a crossed design for desensitization experiments. There are other 
possible designs, perhaps using fewer runs. See Hamada and Wu (2000). 

 
 

S16.3 FURTHER ANALYSIS FOR THE EDDY 
CURRENT MEASUREMENT EXAMPLE 

In the eddy current example discussed in Chapter 16, the team concluded the measurement 
system was not reliable. They came to this conclusion by looking at plots of the eddy cur- 
rent hardness measurement versus the Brinell hardness for all the treatments. We gave an 
example plot in Figure 16.11. Had the results looked more promising, the team could have 
conducted further analysis. For instance, they could have fit a regression model of the form: 

 
eddy current hardness = a + b (Brinell hardness) + residual 

 
for each of the eight treatments defined by the candidates. In the model, the residual represents 
the variation in the eddy current measurements not explained by Brinell hardness. A good 
treatment would have a large estimated slope b and a small residual standard deviation 
(given as s in the MINITAB regression results—see Appendix E). We use |b/s| as the perform- 
ance measure. To illustrate the analysis, for treatment 7 we get: 

 
The regression equation is 
Eddy Current Hardness = 16.3 – 2.60 Brinell 

 

Predictor Coef SE Coef T P 
Constant 16.347 2.041 8.01 0.000 
Brinell –2.5951 0.4544 –5.71 0.000 

 

S  =  0.2172 R-Sq = 34.5% R-Sq(adj) = 33.4% 
 

Analysis of Variance 
 

Source DF SS MS F P 
Regression 1 1.5394 1.5394 32.62 0.000 
Residual Error 62 2.9261 0.0472   
Total 63 4.4656    
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Table S16.4 Eddy current desensitization experiment results. 
 

 

Treatment 

 

Frequency 

 

Temp 

 

Gain 

 

Slope b 
Residual 

variation s 
Performance 

|b/s| 

1 200 35 30 –0.545 0.104 5.2404 

2 200 35 40 –0.948 0.188 5.0426 

3 200 65 30 0.435 0.110 3.9545 

4 200 65 40 –1.010 0.143 7.0629 

5 350 35 30 –0.871 0.195 4.4667 

6 350 35 40 –0.038 0.071 0.5352 

7 350 65 30 –2.600 0.217 11.9816 

8 350 65 40 –0.929 0.110 8.4455 
 

The performance measure for treatment 7 is | –2.5951/0.2172 | = 12.0. The data with the 
calculated performance measures are given in Table S16.4. 

Treatment 7 gives the best performance. The Pareto plot of the effects given in Figure S16.1 
summarizes the results across all treatments. The temperature main effect and the tempera- 
ture by frequency interaction are the largest effects, but nothing stands out. 

 
 

B 

AB 

AC 

C 

A 

BC 

ABC 

A: Freq 
B: Temp 
C: Gain 

 
0 1 2 3 4 

 
 

Figure S16.1 Pareto plot of the effects based on the performance measure. 
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We can also look at promising treatments in more detail by plotting the eddy current by 
Brinell hardness stratified by the four levels of the cause as defined by: 

 
Cause 
combination 

 

Day 
Cleaning 

time 

1 1 5 

2 2 5 

3 1 19 

4 2 19 
 
 

From Figure S16.2 for treatment 7, we see that the eddy current measurement system 
gives inconsistent output across the different levels of the cause. In addition, it does not work 
well for any cause combination, even well cleaned parts. We also see that the average Brinell 
hardness of the parts differed by day. This suggests the chemistry was indeed different 
across the two days. 

 
 
 

5.1 
 

5.0 
 

 

4.9 
 

 
4.8 

 
4.7 

 
4.6 

 
4.5 

 
4.4 

 
4.3 

 
4.4 

 
 

Brinell 

 
4.5 

 
4.6 

 
 

Figure S16.2 Scatter plot of eddy current hardness versus Brinell hardness for treatment 7 
(plotting symbols represent the four values of the cause). 
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Chapter 17 Supplement 
Feedforward Control Based on a 

Dominant Cause 
 
 
 

S17.1 SIMULATING THE BENEFIT OF SELECTIVE FITTING 

When considering implementation of selective fitting in the steering vibration example, 
the team needed to choose the number of bins and the location of the bin boundaries. They 
simulated the effect of two and three bins to determine their choice. The team chose the bin 
boundaries so that roughly equal numbers of components would fall into each bin. For 
example, with two bins they used the median center of gravity for part 2 (that is, 0.75) to 
define the boundary between the bins. We recommend choosing bin boundaries that result 
in roughly equal frequencies of components. For more advanced considerations, see 
Mease (2004). 

We simulate the proposed selective fitting scheme using weights for the components 
sampled in some earlier investigation from the existing process. We start by specifying the 
number of bins, the bin boundaries, and the protocol for the assembly operation. In the 
example, we used a MINITAB macro that randomly selected a number of component pairs 
and calculated the distance from the center of gravity to the axis of rotation. See Appendix 
A for more information on writing MINITAB macros. 

In the following, we give a MINITAB macro that assesses the effect of using two bins for 
part 2, called large and small, with bin boundary 0.75. The assembly protocol is to measure part 
1. If the measured value exceeds the median for part 1, then select a part 2 from the large bin. 
In the simulation, the part 1 distances are sampled randomly from the baseline distribution. 
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MACRO 
selectivefit2 part1 part2 

 
mconstant I I2 cpart2 part1now part2now pnow test distc 
mcolumn  part2 part1 p1list allvals temp testcol 

 
let cpart2=1 
let   I2=1  
let temp=1 
let allvals=0 

 
#repeat 50 times to get a reasonable estimate of the standard deviation 
while I2<=50 
Sample 100 part1 p1list #get a list of 100 distances for part1 at random 
let I=1 
while I<=100 

let part1now=p1list(I) #look at the next part1 
if part1now>0.75 #try to find a part2 that is also bigger than 0.75 

let  test=0 
while test<=0 

let part2now=part2(cpart2) #look at the next part2 
let cpart2=cpart2+1 
if cpart2>100   #end of list, start again 

let cpart2=1 
endif 
if part2now>0.75 

let test=1 #found appropriate match 
endif 
endwhile 

let distc=abso(part1now-part2now)  #vector 
endif 

if part1now<=0.75 #try to find a part2 that is also smaller than 0.75 
let  test=0 
while test<=0 

let part2now=part2(cpart2) #look at the next part2 
let cpart2=cpart2+1 
if cpart2>100 #end of list, start again 

let cpart2=1 
endif 

if part2now<=0.75 
let  test=1 #found appropriate match 
endif 

endwhile 
let   distc=abso(part1now-part2now) #vector components 
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endif 
if (I2=1) AND (I=1) 

let allvals=distc 
else 

Stack allvals distc allvals. #store all the distance values 
endif 
let I=I+1 
endwhile 

let I2=I2+1 
endwhile 

 
let test = MEAN(allvals) #some summaries of the combine distances 
print  test 
Let test = STDEV(allvals) 
print   test 

 
Code  (-100:2)  0  (2:100)  1  allvals  testcol 
let test=sum(testcol)/(50*100)  #determine proportion bigger than 2 
print  test 
ENDMACRO 

 

To call the macro, open the MINITAB file steering wheel vibration feedforward and 
copy the following command into the command line, replacing “filelocation” with the loca- 
tion of the macro on your system: 

 
%   filelocation\selectivefit2.txt'  'part1'  'part2' 

 
Another way to simulate the effect of selective fitting is to first build models that describe 

the centers of gravity for the two components. Then, in the simulation, rather than drawing 
samples from the existing data, we draw samples from the models. We need to be careful that 
the models are appropriate. For an example of the modeling option, see the Chapter 17 exer- 
cises and solutions. 

 

S17.2 MORE ON MAKING PREDICTIONS 

There are many ways to create models to predict the output characteristic from the values 
of the dominant cause(s). Model building, which includes choosing the appropriate inputs 
and their form in the model, can be complicated. Residual plots can be helpful. Complex 
prediction models with many inputs should be validated to check for overfitting and other 
modeling errors. Validation involves building the prediction equation using one set of data 
and checking how well it works using a separate set (Neter et al., 1996). 
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Multiple Regression Models 

In some circumstances, the prediction of output values can be improved by including other 
causes in addition to a dominant cause in the regression model. In other words, we may try 
to fit a model of the form: 

 
output = b0 + b0cause1 +...+ bkcausek + residual, 

 
where the residual is the variation due to all other causes not explicitly included in the 
model. This is called a multiple regression model. For further discussion of regression models, 
see the Chapter 12 supplement and Appendix E. 

We want to avoid adding nondominant causes to the model because: 

• Measuring additional inputs can be expensive. 

• The inclusion of these inputs in the model can lead to overadjustment and, thus, to 
increased output variation. 

Remember there are measurement errors, prediction errors, and adjustment errors. It does 
not make sense to improve the prediction marginally. 

 
Smoothers 

A good smoother is the LOcally WEighted Scatterplot Smoother (LOWESS) available in 
MINITAB (Cleveland, 1979). A LOWESS smoother models the cause/output relationship 
with a smooth curve. Predictions for the output can then be determined for any input value 
within the usual range. This prediction does not assume a linear relationship between the 
cause and the output. 

 
Time Series Models 

Time series prediction models (Box et al., 1994; Abraham and Ledholter, 1983) use the 
current and previous values of the dominant cause to help improve the prediction of the 
next output value. A time series model of this sort is called a transfer function. Transfer 
function models can be useful, for instance, if there is some time-to-time variation in the 
dominant cause or if the cause has a delayed reaction on the output characteristic. Box et al. 
(1994) call a feedforward controller dynamic if the prediction of the output is based on a 
transfer function. 
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Feedback Control 

 
 
 
 
 

S18.1 ALTERNATIVE SIMPLE FEEDBACK CONTROLLERS 

There are many informal ways to implement a feedback control. 
 
Grubbs’s Rule for Feedback in a Setup-Dominated Process 

Grubbs proposed a method for the adjustment of a machine to center the process output at 
startup. See Grubbs (1954) and Del Castillo (2002) for details. The adjustment scheme is: 

• Measure the first part after setup and make an adjustment equal to the 
difference between observed measurement and the process target. 

• Measure the second part and make half the indicated adjustment. 

• Measure the third part and make a third of the indicated adjustment. 

• Stop after a set number of parts. 

This scheme is designed for processes where the dominant cause of variation is in the setup. 
That is, once the process has been centered after startup, it does not drift or suffer sudden shifts. 

 
Precontrol and Control Charts 

Precontrol (or stoplight control) is a feedback control scheme where the possible output 
values are divided into regions based on the specification limits as shown in Figure S18.1. 
The green zone is the middle 50% of the specification range. 
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Figure S18.1 Precontrol division of the specification range. 
 

To implement one of many versions of the rules, measure the output on one part at 
fixed time periods, and: 

• If the measured output falls in the green zone, make no adjustment. 

• If the measured output falls in the red zone, make a full adjustment and use a 
check (five consecutive parts in the green zone, for example) to ensure the 
process is properly centered. 

• If the measured output falls in the yellow zone, measure another part. If the 
second measured value falls in the yellow (on the same side of the target) or red 
zones, make an adjustment. Otherwise, continue with no adjustment. 

Satterthwaite (1954) first introduced Precontrol, which has received considerable attention 
in the research literature. For example, see Traver (1985), Shainin and Shainin (1989), Mack- 
ertich (1990), and Ledolter and Swersey (1997b). For Precontrol to be successful, the drift in 
the process must be relatively slow compared to the frequency of sampling and small relative 
to the specification range. Note that we need to add a rule to determine the size of the adjustment. 

As another alternative, we can use a control chart to monitor the process and signal the 
need for adjustment. In the simplest version, we periodically measure one or more output 

values and plot the measured values on – and R charts. We make an adjustment if there is 
an out-of-control point on either chart. Again, we need a rule to decide on the size of the 
adjustment. To be successful, the sampling must be frequent enough to quickly detect 
changes in the process center. 

Unlike Precontrol, we can also use control charts for process monitoring and for detecting 
the action of a cause of variation. A good comparison of process monitoring and feedback 
control is given in Box and Kramer (1992). 

 
 

S18.2 SIMULATING THE BENEFIT OF FEEDBACK 
CONTROL 

To quantify the potential benefit of a proposed feedback control scheme before implemen- 
tation, we can simulate the effect by applying the scheme retrospectively to some historical 
(baseline or other) data from the existing process. The sampling plans in the proposed 
scheme and the historical data must match. 
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In the simulation, we keep track of the cumulative adjustment made to the series. Once 

the feedback control scheme is in operation, we observe only the adjusted series. To fix the 
notation we define 

• yt as the unadjusted output at time t 
• y* as the adjusted (observed) output at time t when using the feedback 

controller 

• at as the adjustment made at time t (note the adjustment is not felt in the 
process until time t + 1) 

• ct as the cumulative adjustment up to and including time t 

Then, we have: 

• tc  = 
1

t
ii

a
=∑  = 1t tc a− + , that is, the cumulative adjustment is a sum of 

all previous adjustments 
• y* = y + c , that is, the observed output is the original (unadjusted) output plus 

t t t–1 
the cumulative adjustment 

As long as we keep track of the cumulative adjustments in the simulation, we can use these 
equations to go back and forth between the original and adjusted series. 

To simulate the effect of applying the feedback controller, we start at time 1 and calculate 
adjustment a1 and the cumulative adjustment c1 = a1. Then, at time 2, we observe the output * * 

*
2y  = 2 1y c+ . Next, we apply the feedback control rules to the observed series y1, y2 to get 

the adjustment at time 2, a2, and the cumulative adjustment c2 = a1 + a2 = c1 + a2. And so 
on. 

The Matlab (see http://www.mathworks.com) code that follows illustrates the retrospec- 
tive application of a feedback control scheme to the flow rate example from Chapter 18. The 
simulation is also straightforward to implement in Microsoft Excel. We show both the sim- 
ulation of a controller based on the EWMA forecast with parameter alpha (as suggested in 
Chapter 18) and a simpler feedback controller that adjusts back to target if the observed flow 
rate is outside the range [99, 107]. 

 
function  []=feedbacksim(flowrate,alpha,dev) 
%simulate the effect of using feedback on the fascia film build example 
%original  flow  rate  data  given  in  vector  "flowrate" 
%example function call: feedbacksim(flowrate,0.2,4) 

 
%try out the feedback controller based on the EWMA forecast of unadjusted %series, 

and  based on  partial adjustment of deviation from  target 103 
 

cumadj1=0; %cumulative adjustment for EWMA 
cumadj2=0;   %cumulative adjustment for simple controller 
z=flowrate-103*ones(1,180); %deviation from target for UNADJUSTED series 

 
%do not make an changes for time 1 
aseries1=z(1); aseries2=z(1); %initialize 
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for t=1:179,   %look at all flow rate values 

%try EWMA controller 
cumadj1=cumadj1-alpha*aseries1(t); 

aseries1(t+1)=z(t+1)+cumadj1; 
%try  simple  controller 

if (aseries2(t)<-dev) | (aseries2(t)>dev), %on standardized scale 
cumadj2=cumadj2-aseries2(t); 

end; 
aseries2(t+1)=z(t+1)+cumadj2; 

end; 
 

std(aseries1) %stdev of series using EWMA based controller 
std(aseries2) %stdev of series using simple feedback controller 

 
%plot of adjusted and unadjusted series 
plot([1:180],z,'o-');     hold  on 
plot([1:180],aseries1,'x-'); 
plot([1:180],aseries2,'x--'); 
hold off 

 

Note that when using an exponential smoother to predict the next output value (as with 
the flow rate data shown in Figure 18.6) and making the full adjustment, MINITAB auto- 
matically gives the standard deviation of the adjusted series as the square root of the MSD, 
so there is no need to simulate. 

Simulating the implementation of the proposed feedback controller using historical 
data will most likely overestimate the potential benefit since: 

• We use the same historical data to model the data and develop a prediction 
equation. 

• The simulation assumes there is no adjustment error. 

An alternative way to assess the potential benefit of feedback is to fit a time series model 
to the historical data and simulate new output data. With a model for the output we need to 
check that the simulated series without any adjustment seems reasonable when compared to any 
historical data we have from the existing process. An advantage of having a model is that we 
can repeatedly simulate the effect of the proposed feedback controller. 

 
 
S18.3 PROPERTIES OF THE EXPONENTIAL WEIGHTED 

MOVING AVERAGE 

There are many options to obtain a forecast of future output values. Suppose we have a 
sampling protocol that looks at parts at equally spaced times labeled 1, 2, ..., t, and at each 
time point, we measure the output. The goal is to predict the output at time t + 1 using the 
observed values up to time t. Mathematically, we may view this as predicting the next 
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output yt+1, using all previous outputs yt, yt–1, yt–2, ..., where yt denotes the value of the out- 
put measured at time t. For the moment, we assume there have been no adjustments. Denot- 
ing the one-step-ahead forecast as ŷt + 

, two possible predictors are: 

• Moving average: the average of the last k outputs; that is, 
 

ŷt +1 = (yt  + yt−1 + … + yt−k +1 ) k 
 

• EWMA: a weighted average of all previous outputs with exponentially 
decaying weights; that is, 

 1ˆty +  = 2 3
1 2 3(1 ) (1 ) (1 )t t t ty y y yα α α α− − − + − + − + − +   (S18.1)

 
where α (the Greek letter alpha) is a constant and 0 < α ≤ 1. 

A special case of both options is using the last output value; that is, setting ŷt +1 = yt . 
Figure S18.2 illustrates the difference between the two forecasting options in terms of the 
relative weights given to past observations. 

In the EWMA, a large value of α is best when the original series has small short-term 
variation, and thus recent observations provide a good prediction of the output value of the 
next unit. In situations where the process mean changes gradually, a good value for α often 
lies between 0.2 and 0.4 (Box and Luceno, 1997). 

In any application, the best choice of forecast depends on the how the process changes 
over time when no adjustments occur. If there are sudden shifts, we want to use the moving 
average with k small. If the process shifts gradually, the EWMA is preferred. We need to 
determine k if we select the moving average and α if we pick the EWMA. The choice is 
best made empirically by simulating the performance of the possible schemes using some 
historical data. See Section S18.2. 
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Figure S18.2 Possible weights (left panel moving average with k = 3, right panel EWMA 
with α = 0.6). 
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Adjusting a Controlled Process 

Once a controller is in operation, we no longer observe the original unadjusted series, and 
it is not obvious how to predict the next observation or what the appropriate adjustment is 
at each time point. In this section, we show that if we: 

• Use the EWMA forecast and 

• Assume perfect and complete adjustment after each observation, 

then the correct adjustment is 〈(y* − T ) toward the target, where   *
 

t is the observed output 
(that is adjusted series) at time t, and T is the target value for the process center. We use the 
same notation as in the previous section to define the adjustment at time t, at, and the cumu- 
lative adjustment at time t, ct. 

Without loss of generality, we assume and  * have been scaled so that the target value 
t t 

is zero. Now suppose at each time period we make an adjustment to partially compensate 
for the difference between the observed output yt  and the process target; that is, we set 

 

ta  = ( )* 0tyα− −  

 
Then, the cumulative adjustment at time t is given by 

 

tc  = 1t tc a− +  

tc  = *
1t tc yα− −  

tc  = ( )1 1t t tc y cα− −− +  

tc  = 1(1 )t ty cα α −− + −  

tc  = ( )2 1(1 )t t ty c aα α − −− + − +  

tc  = ( )( )2 1 2(1 )t t t ty c y cα α α− − −− + − − +  

tc  = ( ) 2
1 2(1 ) (1 )t t ty y cα α α− −− + − + −  

tc  = ( ) ( )( )2
1 3 2 3(1 ) (1 )t t t t ty y c y cα α α α− − − −− + − + − − +  

tc  = ( )2 3
1 2 3(1 ) (1 ) (1 )t t t ty y y cα α α α− − −− + − + − + −  

… 
So tc  = 1ˆty +−   

 

Hence the cumulative adjustment is given by Equation (18.1); that is, we fully compensate 
for the deviation between the EWMA forecast for yt+1 made at time t and the target. Since, 
for the adjusted series, the predicted value at time t+1 equals *

1 1ˆ ˆt t ty y c+ += + , the predicted 
output at time t + 1 will be on target. 



Feedback Control CD–295 
 

 
Partial Adjustment 

In discussing a feedback controller based on an EWMA forecast, we assume a full adjustment 
is made after each observation. Due to cost or other considerations, we may decide to make 
an adjustment only if the predicted deviation from target is large. 

We can easily assess the effect of occasional adjustments by keeping track of the cumu- 
lative adjustment made up to time t (that is, ct–1) so that we can recreate the series we would 
have observed had no adjustments been made ( ty = *

1t ty c −− ). Using this unadjusted 
(and unobserved) series, we can determine an EWMA or any other forecast for the next 
time period. Then, translating back to the observed series, we compare the predicted 
observed output (that is, ŷt +1 + ct−1) to the process target to decide if further adjustment is 
needed. 

 
S18.4 CONNECTION TO PID CONTROLLERS 

There is extensive literature on feedback control in the engineering field. See for instance 
Aström (1970), Aström and Wittenmark (1989), and Prett and Gracia (1988). This litera- 
ture does not, for the most part, address the important question of how to estimate model 
parameters from data. The EWMA-based controller is a discrete analog of a proportional, 
integral, derivative (PID) controller. A comprehensive treatment of feedback control from 
a statistical perspective is given in Box and Luceno (1997). 



 

 



 

 

Chapter 19 Supplement 
Making a Process Robust 

 
 
 
 
 

S19.1 TAGUCHI’S METHODOLOGY 

There is considerable controversy about the methods, experimental designs, and analysis 
suggested by Genichi Taguchi (1987); for instance, see Nair (1992) and Phadke (1989). 
Generally, at least in the statistical literature, it is felt that the fundamental ideas are valuable 
but that the specific designs and analyses can be improved upon. We briefly look at a number 
of ideas promoted by Taguchi. 

In contrast to Statistical Engineering, with Taguchi’s methodology: 

• There is no recommended algorithm to reduce variation in existing processes 

• There is little emphasis on understanding the patterns and causes of variation in 
the process output 

• There is no explicit recognition of or search for a dominant cause 

• There is heavy use of the robustness approach 

To summarize the lack of emphasis put on identifying the cause, we quote Shin Taguchi 
from Nair (1992): 

 
Notice that the objective of parameter design is very different from a pure scientific 
study. The goal in parameter design is not to characterize the system but to achieve 
robust function. Pure science strives to discover the causal relationships and to 
understand the mechanics of how things happen. Engineering, however, strives to 
achieve the results needed to satisfy the customer. Moreover, cost and time are very 
important issues for engineers. Science is to explain nature while engineering is to 
utilize nature. (p. 130) 

Taguchi considers using experimental design in both the product development process 
and to improve an existing process. This is a much broader view of improvement than is 
taken in Statistical Engineering, where we focus on improving an existing process. 
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To improve an existing process, Taguchi recommends: 

• The process desensitization approach if there is a suspect cause 

• The process robustness approach otherwise 

In our experience, we have seen the desensitization approach fail because the cause 
included in the experiment was not dominant. There is little value in making the process 
insensitive to a cause that makes a small contribution to the overall variation. 

Taguchi calls performance measures signal-to-noise (S/N) ratios. There is a large vari- 
ety of signal-to-noise ratios that can be applied in different situations. Most often, Taguchi 
recommends S/N ratios of the form 

 

( )2 210 log y s  or –10 log(s2 ) 
 

where y is the average output in a run and s is the standard deviation of the output values 
measured within a run. Note that –10 log(s2) = –20 log(s), so that Taguchi S/N ratio 
–10 log(s2) is a rescaled version of the performance measure we recommend to analyze 
robustness experiments where the goal is to reduce the within-run variation. We get identical 
conclusions from the analysis with either performance measure. 

In some problems, the goal is to lower or increase the process center. Taguchi calls these 
smaller/larger-is-better problems and recommends the S/N ratios: 
 

Smaller is better:  2 2
110 log[( ... ) / ]ry y r− + +  

 

Larger is better:  2 2
1

1 1 110log[ ( ... )]
rr y y

− + +  

where y1,..., yr are the r measured values of the output characteristic on the repeats within 
each run. The idea is to calculate the performance measure (S/N ratio) for each run and then 
analyze these measures as the response in the experiment. In all cases, S/N ratios are 
defined so that larger values are better in terms of the goal of the problem. See Box (1988) 
for further discussion of signal-to-noise ratios. We recommend using two performance 
measures, the within-run average and log standard deviation, rather than a single S/N ratio. 

Many of Taguchi’s designs and methods of analysis are available in MINITAB. We do 
not recommend them. 
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In the appendices we show how to create the graphs and statistical analyses described in this 
book using the statistical software package MINITAB. Throughout we assume the reader is 
familiar with a Windows-based environment. 

MINITAB is a general-purpose statistical software package. See http://www.minitab.com. 
MINITAB is a leader in the area of quality improvement and is widely used in industry. 
There are other suitable packages such as SAS, Splus, Statgraphics, JMP, and Systat. We do 
not recommend Microsoft Excel because we find it cumbersome and inefficient for produc- 
ing the required analyses. In this book we illustrate MINITAB release 13.30 for Windows. 

MINITAB is easy to use since its interface is based on pull-down menus and dialog 
boxes. The capabilities of MINITAB are well explained in the manuals (MINITAB User’s 
Guide 1 and 2, 2000a and 2000b) and by the online help. In particular, in each dialog box 
there is an option for context-sensitive help that usually includes an example. A good ref- 
erence book for MINITAB is Ryan et al. (2000). 

In these appendices, we show how to select a MINITAB command through its pull- 
down menu structure using words and arrows. For example, a multivari chart is obtained in 
MINITAB using the menu selection: 

Stat → Quality Tools → Multi-Vari Chart 

This corresponds to menu navigation. 
 

 
 

 

Finding a MINITAB command. 

http://www.minitab.com/


 

 



 

 

Appendix A 
Data Storage and Manipulation 

 
 

The first step is to get the data into the MINITAB worksheet. To illustrate, we use an inves- 
tigation where the goal was to compare the performance of three different measurement 
devices—a feeler gage, a height gage, and a scale gage—for measuring the distance 
between a bottle lip and a label. The data are given in the file label height measurement. 

To open a MINITAB worksheet (a file with the extension .mtw) we use: 

File → Open Worksheet 

To open an existing MINITAB project, which includes a worksheet with the data and 
all numerical and graphical summaries of the data we previously produced, use 

File → Open Project 
 
A.1 ROW/COLUMN DATA STORAGE FORMAT 
In MINITAB, data are stored in a worksheet similar in appearance to a Microsoft Excel 
worksheet. See Figure A.1 for an example. There are, however, some important differences 
between Excel and MINITAB worksheets. With MINITAB, the data must be entered in the 
row/column format, where each column in the worksheet represents a different characteristic 

 

 
 

 

Figure A.1   Data in the MINITAB worksheet. 
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Figure A.2   Poorly stored data in an Excel spreadsheet. 
 

(output or input), and each row represents a different observation. This format is not neces- 
sarily intuitive for people who commonly use Excel. Also, in MINITAB every column (i.e. 
characteristic) can be given a descriptive name. 

To illustrate why the row/column format is recommended, see Figure A.2, which 
shows how the data for the measurement investigation were initially recorded. The Excel 
worksheet in Figure A.2 gives the results only for the feeler gage. The results for the height 
and scale gages were stored in separate worksheets. In Figure A.2, the meaning of each data 
value depends not only on its location in the worksheet, but also on the location of various 
labels. For example, the value in cell B2 (0.062) gives the lowest value of trial 1 of the first 
operator for bottle A using the feeler gage. This way of storing data is not convenient when 
doing analysis, since determining the meaning of the various data values is difficult. 

Figure A.1 shows how the same data for all three gages were stored in MINITAB. The 
label above each column provides the name of the stored characteristic, and each row rep- 
resents a different observation, or in this case, a measurement. The 0.062 value discussed 
previously is now stored in the first row of column C3 (labeled feeler_low). We can iden- 
tify the corresponding part (bottle 1) and operator (A) by examining the values of the other 
characteristics in the same row. 

The more efficient row/column format approach to storing data identifies the relation- 
ships among the collected values. We can also store data in Excel in the row/column for- 
mat. Translating from the original data format, shown in Figure A.2, to the row/column 
format, shown in Figure A.1, is a tedious process. 



Appendix A: Data Storage and Manipulation CD–303 
 

 
Another important advantage of a MINITAB worksheet is its ability to easily handle 

missing values. Any blank spaces in the data file become stars (symbol for missing) in 
MINITAB. All analyses in MINITAB properly deal with missing values. It is a poor idea to 
use special numerical codes like –99 to signify missing values. Using numerical codes for 
missing observations will adversely affect many data summaries. 

 

A.2 MAKING PATTERNED DATA 

It is often useful to create patterned data. The patterned data commands are shown in 
Figure A.3 and accessed via the MINITAB menu selection: 

Calc → Make Patterned Data 

In the label height measurement example, to create the column corresponding to part 
numbers, we fill in the dialog window as in Figure A.4. Each of 12 parts is measured four 
times (twice each by two different operators). Applying the command creates four 1s, four 2s, 
and so on in column C1. If preferred, text values (for example, A, B, C, and so on) can be 
used to represent the different bottles. 

 
 

 
 

 

Figure A.3 Patterned Data menu. 
 
 

 
 

 

Figure A.4 Dialog box for simple set of patterned numbers. 
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A.3 CALCULATING DERIVED CHARACTERISTICS 

To calculate new characteristics from the existing data, we use the calculator: 
 

Calc → Calculator 
 

In the label height measurement example, the minimum and maximum heights (as the bottle 
was rotated) were recorded. In Figure A.5, we use the calculator to record the difference 
(max–min) for each feeler gage measurement in column C9. 

To use the calculator, we enter a formula involving the existing characteristics in the 
expression window. The expression can be typed in directly or identified using the 
select button. The expression may include any of the functions given in the list. Many 
standard statistical functions such as average and standard deviation are available. Note 
that (most of) these functions act simultaneously on all rows across different columns. 
Column summaries (for example, the mean or standard deviation of a characteristic) are 
discussed in Appendix B. 

 
 

 
 

 

Figure A.5 Calculator dialog box. 
 

A.4 SELECTING A DATA SUBSET 

In many circumstances, it is useful to stratify the data in some way. Many numerical and 
graphical summaries (see appendices B and C) allow stratification without subsetting the 
data. We sometimes stratify data into separate worksheets using (see Figure A.6): 

Manip → Subset Worksheet [Data → Subset Worksheet, in release 14.11] 

or 

Manip → Split Worksheet [Data → Split Worksheet, in release 14.11] 
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Figure A.6 Subset Worksheet dialog box. 
 

When selecting the subset, we select the data observations to either include or exclude. 
There are a variety of ways of specifying the subset of observations. We can give the row numbers, 
select the rows beforehand using brushing, or give a condition that must be satisfied. 

 
A.5 STACKING COLUMNS 

In some circumstances, it is convenient to have the data stored in more than one way in order to 
conduct the desired analysis. Consider the brake rotor balance example discussed in Chapter 13. 
In the verification experiment there were eight runs at each of the eight treatments and, within 
each run, eight rotors were produced. The data are stored in the file brake rotor balance 
verification and the worksheet is shown in Figure A.7. The balance weights required for the 
eight rotors within each treatment are stored in separate columns labeled r1 through r8. 

To start the analysis, we plot the weight by treatment as shown in Figure 13.4. To produce 
this plot, however, we need all 64 balance weights stored in a single column. We stack the 
columns using: 

 
Manip → Stack → Stack Columns 

 
 

 
 

 

Figure A.7   Brake rotor balance verification experiment plan and data. 
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Figure A.8 MINITAB Stack Columns dialog box. 
 
 

 
 

 

Figure A.9 Worksheet resulting from stacking columns. 
 

The corresponding MINITAB dialog box with the required information filled in is 
given in Figure A.8. 

Stacking the columns produces the first two columns shown in Figure A.9, where the 
second column has been given a descriptive label. To produce Figure 13.4, we need an 
additional column that gives the treatment corresponding to each weight. Figure A.9 shows 
the results of using the command to make patterned data as described in Section A.2. 

The data were originally stored as in Figure A.7 because, for subsequent analysis, we 
calculate main and interaction effects based on the average balance weight. 
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A.6 MINITAB MACROS 

Macros are useful for automating a series of commands repeated many times. Macros are 
also needed if you want do calculations row by row (that is, observation by observation) 
where the action depends on the previous value(s). For example, a macro can be used to 
simulate the effect of a proposed feedback control scheme on existing process data. 

MINITAB macros are similar to the macros available in other software such as Excel. 
See the MINITAB help for more information on writing macros. 

The sample macro illustrates testing a proposed feedback control scheme for the piston 
diameter example discussed in Chapter 18. The data are given in the file V6 piston diameter 270. 
The feedback scheme adjusts the process center back to the target of 6.7 if the observed 
diameter is less than 2.7 or greater than 10.7. Note that in the data file there are 200 diam- 
eter readings. 

 
MACRO 
macrotest  diameter  adjusted 

 
mconstant cumad I diameter2 nadj 
mcolumn diameter adjusted 

 
let I=1 
let cumad=0  #cumulative adjustment needed based on rule 
let nadj=0 

 
while I<=200 
let diameter2=diameter(I)+cumad #current value 
let adjusted(I)=diameter2 
#determine if further adjustment needed 
if diameter2<2.7 
let cumad=cumad+(6.7-diameter2) 
let nadj=nadj+1 
endif 
if diameter2>10.7 
let cumad=cumad-(diameter2-6.7) 
let nadj=nadj+1 
endif 

 
let I=I+1 
endwhile 

 
ENDMACRO 

 

We save the macro in a separate text file and call the macro using the command line editor. 
The command line editor is available using: 

Edit → Command Line Editor 
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To run the macro from the command line we type: 

%macro name (including path if necessary) v1 v2 ... 

where v1 and v2 are the characteristics from the current worksheet the macro acts on or 
characteristics the macros creates. For example, we may issue the command as shown in 
Figure A.10. 

 

 
 

 

Figure A.10   Running a MINITAB macro. 
 
 

The result of executing the macro is shown in the data file snapshot in Figure A.11. At 
observation 39, the observed diameter was 11.7. In the example, this was the first time an 
adjustment was required. At that time, the cumulative adjustment was set to –5. We can see 
the effect of the adjustment on subsequent diameters. Later in the data file (not shown in 
Figure A.11) further adjustments are necessary. 

 
 

 
 

 

Figure A.11 MINITAB worksheet showing effect of running the macro. 
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Figure A.12 MINITAB show history dialog button. 
 
 

To write MINITAB macros, we can use the Show History dialog button that gives the 
command line interpretation for any MINITAB commands run using the pull-down menus. 
The History dialog button is the small yellow button with a prompt (>) at the far right at the 
top of the MINITAB window, as shown in Figure A.12. 

Another example macro to simulate the effect of selective fitting is given as part of the 
solution to Exercise 17.2. 



 

 



 

 

Appendix B 
Numerical Summaries 

 
 
 
 
 
 

We use a manifold sand scrap investigation to illustrate various numerical data summaries 
in MINITAB. In the investigation, each manifold was classified as scrap or not and linked 
(as well as possible) to a number of sand and pour characteristics. We have a total of 17 
characteristics measured on 970 castings. The data are given in the file manifold sand scrap 
comparison. 

 
 

B.1 NUMERICAL SUMMARIES FOR 
CONTINUOUS CHARACTERISTICS 

Numerical summaries appropriate for continuous characteristics are available using: 
 

Stats → Basic Statistics → Display Descriptive Statistics 

Selecting the input characteristics pour time and temperature gives: 
 

Descriptive Statistics: pourtime, temperature 
 

Variable N Mean Median TrMean StDev SE Mean 
pourtime 970 4.6990 4.7000 4.6794 0.5132 0.0165 
temperature 970 92.446 92.450 92.442 2.751 0.088 

 

Variable Minimum Maximum Q1 Q3 
pourtime 3.3000 7.5000 4.4000 5.0000 
temperature 86.100 98.500 90.500 94.100 

 

To define the summary measures, Mean is the sample average and StDev is the sample 
standard deviation. If we rank the values, the smallest value is given by Minimum, the 
largest value by Maximum, and the middle value by Median. Q1 and Q3 define the first and 
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Figure B.1   Display Descriptive Statistics dialog box. 
 
 

third quartiles—that is, the observation halfway in the ordered list between the minimum 
and the median, and halfway between the median and the maximum, respectively. The 
median defines the second quartile. 

We can also produce numerical summaries for any characteristic stratified by a discrete 
characteristic. The dialog box in Figure B.1 shows how to stratify the summary for pour 
time by the mold hour. 

The results are: 
 

Descriptive  Statistics: pourtime  by  mold  hour 
 

Variable mold hour N Mean Median TrMean StDev 
pourtime 3  166 4.8470 4.7000 4.8320 0.6400 

 4  172 4.7488 4.7000 4.7130 0.5893 
 5  176 4.5409 4.5000 4.5196 0.5540 
 6  180 4.6289 4.6000 4.6228 0.4833 
 7  142 4.7423 4.7000 4.7359 0.3190 
 8  134 4.7075 4.7000 4.7100 0.2568 

 

Variable mold hour SE Mean Minimum Maximum Q1 Q3 
pourtime 3  0.0497 3.7000 6.2000 4.3000 5.3000 

 4  0.0449 3.8000 7.5000 4.3000 5.1000 
 5  0.0418 3.3000 7.3000 4.1250 4.8750 
 6  0.0360 3.5000 6.5000 4.3000 4.9000 
 7  0.0268 4.1000 5.5000 4.5000 5.0000 
 8  0.0222 4.1000 5.2000 4.5000 4.9000 
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Sometimes we need to save numerical summaries in the worksheet for further analysis. 

We request storage of some of the descriptive summaries using: 

Stats → Basic Statistics → Store Descriptive Statistics 
 

From the dialog box (see Figure B.2) selecting Statistics, we check off the data summaries 
we want to save. This is useful in the analysis of multivari investigations that involve a part- 
to-part family or other family that is expected to have a haphazard effect. 

 
 

  
 

 

Figure B.2 Store Descriptive Statistics dialog box. 
 
 
 

Note that numerical summaries are sometimes given using exponential notation. 
Exponential notation is convenient for very small or very large numbers. The integer given 
after the E tells us how many positions (to the right, if the integer is positive; to the left, if 
the integer is negative) to shift the decimal point; for example, 4.49E–03 = 0.00449. 

 
 

B.2 NUMERICAL SUMMARIES FOR 
DISCRETE CHARACTERISTICS 

 
For discrete characteristics, count summaries are available through the MINITAB menu 
selection: 

 
Stat → Tables → Tally 

 
Figure B.3 shows the Tally dialog box. 
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Figure B.3 Tally dialog box. 
 
 

Using the tally summary for the characteristic scrap, we get 
 

Tally  for  Discrete  Variables:  scrap 
 

scrap Count Percent 
0 853 87.94 
1 117 12.06 

N= 970  
 

We see that there are only two possible values for scrap (where 0 represents a passed man- 
ifold and 1 a manifold that was scrapped). The proportion of scrap is roughly 12%. 

In such situations, we may also be interested in determining whether a relationship 
exists between two discrete characteristics. We use the MINITAB menu selection: 

 
Stat → Tables → Cross Tabulation 

 
For example, as illustrated by Figure B.4, we may be interested in determining if there 

is a relationship between mold hour and whether the casting is scrapped. The MINITAB 
results given as follows suggest the scrap rate is lower in hours 7 and 8 though the sample 
size in each hour is small. 
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Figure B.4 Cross Tabulation dialog box. 
 
 

Tabulated  Statistics:  mold  hour,  scrap 

Rows: mold hour Columns: scrap 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cell Contents -- 
Count 
%  of Row 

 0 1 All 

3 141 25 166 
 84.94 15.06 100.00 

4 148 24 172 
 86.05 13.95 100.00 

5 151 25 176 
 85.80 14.20 100.00 

6 156 24 180 
 86.67 13.33 100.00 

7 133 9 142 
 93.66 6.34 100.00 

8 124 10 134 
 92.54 7.46 100.00 

All 853 117 970 
 87.94 12.06 100.00 

 



 

 



 

 

Appendix C 
Graphical Summaries 

 
 
 
 
 
 

In all investigations, graphical summaries play an essential role in the analysis. Often we use 
only a graphical summary to draw conclusions. 

 
 
C.1 HISTOGRAM 

A histogram summarizes the distribution of a continuous characteristic in the data set. 
Histograms are available through the MINITAB menu selection: 

 
Graph → Histogram 

To make comparing histograms easier, we recommend using the option button and 
choosing percent rather than the default frequency display. In the manifold sand scrap 
example introduced in Appendix B, we enter the characteristic pour time as the graph vari- 
able to get the histogram in Figure C.1. The data are given in the file manifold sand scrap 
comparison. 
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Figure C.1 Histogram of pour times. 
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The histogram shows the distribution of pour times. In Figure C.1, we see that the aver- 
age pour time is roughly 4.75 seconds and that there are a few large pour times above 7 seconds. 
Note that the time order of the data is lost in a histogram. 

If there is a large number of observations, it may be difficult to identify outliers (unusually 
small or large values) in a histogram. This occurs, for instance, in the histogram of align- 
ment pull given in Figure 1.2. Box plots, covered in Section C.3, are a good alternative 
when the number of observations is large or when we wish to compare distributions. 

 
 

C.2 RUN CHART 

We use run charts (also called time series plots) to look for patterns over time. A run chart 
is available through: 

 
Graph → Time Series Plot 

 
The run chart of pour time in Figure C.2 shows the time order. Figure C.2 suggests the 

variation in pour times is greater at the beginning of the investigation. At the end, say after 
casting 700, the variation is noticeably smaller. 

The run chart assumes the observations are equally spaced in time. If this is not the 
case, we use a scatter plot (see Section C.4) where the horizontal axis is defined in terms of 
time. If the data are collected in subgroups over time, say five units measured each hour, we 
can also use a multivari plot (see Section C.5). 
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Figure C.2 Run chart of pour times. 
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C.3 BOX PLOT 

A box plot is a simplified histogram useful for comparing data subsets and identifying outliers. 
Box plots are available using (see Figure C.3): 

Graph → Boxplot 
 
 

 
 

 

Figure C.3 Boxplot dialog box. 
 

In Figure C.4 we stratify pour time by whether or not the part is scrapped. The horizontal 
line in the middle of each box gives the median value. The upper and lower edges of the rectan- 
gle show the first and third quartiles, Q1 and Q3, defined in the descriptive statistics summary in 
Appendix B. The so-called whiskers are the lines coming out of the central rectangle. The ends 
of the whiskers identify the range of the data with the exception of unusual values plotted as sep- 
arate stars. The plotting of unusual values with separate symbols is useful for finding outliers. 
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Figure C.4 Box plot of pour time by scrap. 
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If the number of observations summarized in the box plot is small, we prefer displaying 
the individual observations rather than the summary statistics. In MINITAB we change the 
display items to Individual Symbol, rather than the default of IQRange Box and Outlier 
Symbol. In MINITAB release 14.11, we can plot individual observations using: 

 
Graph → Individual Value Plot 

 
For example, Figure C.5 shows measurement error stratified by part number for the 

camshaft diameter relative bias investigation discussed in Chapter 7. The data come from 
the file camshaft journal diameter measurement2. In Figure C.5, we see the that measure- 
ment error is negative in all cases and that there is little difference in the distribution of the 
errors among the parts. 
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Figure C.5 Box plot (showing individual observations) of measurement error by part number. 
 

C.4 SCATTER PLOT 

A scatter plot is a generalization of a run chart where the horizontal axis is defined by any 
characteristic, not just time. Scatter plots are available through: 

 
Graph → Plot [Graph → ScatterPlot in release 14.11] 

 
Scatter plots are useful for examining the relationship between two characteristics. In 

the manifold sand scrap example we examine how pour time changes with ladle number 
(see Figure C.6). 

The resulting scatter plot, given in Figure C.7, suggests there is no association between 
pour time and ladle number. 
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Figure C.6 (Scatter) Plot dialog window. 
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Figure C.7 Scatter plot of pour time versus ladle number. 
 
 

Adding Jitter 

In the crossbar dimension robustness investigation from Chapter 19, eight treatments were 
used, and each run consisted of five consecutive parts for each treatment. The data are given 
in the file crossbar dimension robustness. The output “burn” could take only four possible 
values. Plotting burn by treatment, as shown in the left panel of Figure C.8, is helpful but 
difficult to interpret, since we cannot see the output for all five parts in each run. Many 
observations are plotted on the same position, called overplotting. We add jitter (small 
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Figure C.8 Scatter plot of burn by treatment—regular on left, with jitter in vertical 
direction on right. 

 

 
 

 

Figure C.9 Plot Options dialog box showing selecting of jitter. 
 

random perturbations) to each observation to reduce the effect of overplotting as given in 
Figure C.9. Here we illustrate adding jitter in the vertical, or Y, direction. The scatter plot 
with added jitter is shown in the right panel of Figure C.8. The dialog box shown in Figure 
C.9 is obtained by selecting options in Figure C.6. 

 
Labeling Points 

The plotted points can be labeled using the values of any discrete characteristic. Consider 
the cylinder head scrap example discussed in Chapter 12. The data are given in the file 
cylinder head scrap multivari. The team wanted to see if the relationship between side shift 
(the output) and time depended on pattern. 

They used the dialog box, as shown in Figure C.10, to make the scatter plot given in 
Figure C.11. Note the change to the data display in the Plot dialog box. There are four dif- 
ferent plotting symbols, one for each pattern. Generally, pattern 1 has the largest side shift 
and pattern 2 the smallest, but there is no dependency on time. 
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Figure C.10 (Scatter) Plot dialog box showing a group variable. 
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Figure C.11 Scatter plot of side shift by time with labels for different patterns. 
 
 
 

Draftsman and Matrix Plots 

To create many scatter plots simultaneously, MINITAB provides a way to produce multiple 
graphs with defined output and input characteristics. A draftsman plot is available through 
the MINITAB menu selection: 

 
Graph → Plot → Draftsman Plot [option each Y versus each X under Graph � 
Matrix Plot in release 14.11] 

 
The draftsman plot automatically produces all scatter plots that involve the output 

characteristic (Y variable) and the list of input characteristics (X variables). Figure C.12 
shows the dialog box. 
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Figure C.12 Draftsman Plot dialog box. 
 

In Figure C.13, we see no clear relationship between the sand scrap proportion and var- 
ious sand characteristics. Upon closer inspection, however, a quadratic relationship between 
temperature and sand scrap proportion becomes clear. This example illustrates the point that 
if too many characteristics are chosen, draftsman plots (and matrix scatter plots, as will be 
discussed) will be hard to interpret, since each individual plot will be very small. In that case 
we look at the scatter plots one at a time. 

A matrix plot is another way of producing multiple scatter plots simultaneously. Unlike 
with a draftsman plot, we now make no distinction between inputs and outputs. The win- 
dow leaks problem discussed in Chapter 12 provides an example, where we also label the 
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Figure C.13 Draftsman plot. 
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plotted points to show leakers and nonleakers. The data are given in the file window leaks 
comparison. A matrix scatter plot is available using: 

 
Graph → Plot → Matrix Plot 

 
Selecting all the inputs and using class as a group variable, as shown in Figure C.14, 

we obtain the matrix scatter plot in Figure C.15. 
 

 
 

 

Figure C.14 Matrix (scatter) Plot dialog window. 
 
 

 
 

 

Figure C.15 Matrix scatter plot with labeled points. 
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Leaking windows are shown with circles, and nonleakers are shown with plus signs. 
There is a separation between leakers and nonleakers if we look simultaneously at the two 
inputs: plastisol amount and primary seal fit. The plot in the lower left corner of Figure C.15 
is reproduced in a larger format in the right panel of Figure 12.2. 

 
 

C.5 MULTIVARI CHART 

A multivari chart displays the variation in the output due to families labeled by a discrete 
or categorical input. Multivari charts are available using: 

Stat → Quality Tools → Multi-Vari Chart 

The background and multivari investigation for the cylinder head scrap problem are 
described in Chapter 11. The side and end shift data for the 96 measured parts are stored in 
the file cylinder head scrap multivari. 

To create a multivari chart, specify an output characteristic (called response in MINITAB) 
and up to four inputs (factor 1, factor 2, and so on). The order of the inputs affects the 
graphical display. Choose either time or the characteristic with the most different levels as 
the last factor, because this factor defines the labels on the horizontal axis. 

Figure C.16 shows the Multi-Vari Chart dialog box. We recommend always using the 
Options button to check Display individual data points. 

 

 
 

 
 

 

Figure C.16   Multi-Vari Chart dialog box with Options window. 
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Figure C.17 Multivari chart for cylinder head scrap example. 
 

Using the selections made in Figure C.16 results in the multivari chart given in Figure C.17. 
Figure C.17 shows large systematic differences among the patterns (cavities). The vari- 

ation within each pattern is about 60% of the overall variation. 
The dialog box in Figure C.18 creates a multivari chart involving two inputs—time and 

pattern. From the resulting chart in Figure C.19, we conclude that the dominant cause acts 
only in the pattern-to-pattern family and does not involve the time-to-time family. 

A multivari chart with three or four inputs can be difficult to interpret. Using a variety 
of different charts and orders for the inputs may help. 

 
 

 
 

 

Figure C.18 Multi-Vari Chart dialog box showing two inputs. 
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Figure C.19 Multivari chart of side shift versus pattern and time. 
 

Exploring Haphazard Families 

Consider the casting thickness example introduced in the supplement to Chapter 11, where 
the casting-to-casting family has haphazard effect. We want to determine if changing one of 
the other inputs results in changes in variation within different levels of the haphazard family. 

To conduct the analysis, we first define a new output based on the standard deviation of 
original output within each level of group, where group = (time – 1)*24 + (cavity – 1)*4 + 
position. The variation within each group is due to causes acting in the casting-to-casting 
family. We use the MINITAB calculator, described in Appendix A, to define group. Next, 

we define a new output characteristic using: 

Stat → Basic Statistics → Store Descriptive Statistics 

The dialog box is shown in Figure C.20. This creates two new columns in the 
MINITAB worksheet. The first column (labeled “ByVar1”) gives the group number, while 
the second column gives the within-group standard deviation. To ease interpretation of the 
subsequent analysis, we relabel the second new column “group stdev.” Part of the resulting 
MINITAB worksheet is shown in Figure C.21. 

 

  
 

 

Figure C.20 MINITAB dialog box to store group standard deviation. 

S
id

e 
sh

ift
 



Appendix C: Graphical Summaries CD–329 
 

 
 

 
 

 

Figure C.21 MINITAB worksheet showing group standard deviation. 
 

To create the multivari charts for the group standard deviation, we also need to define 
new input columns that give the values of the original inputs for each level of the charac- 
teristic group. This is best accomplished using: 

Manip → Code → Use Conversion Table 

We define a new input column for cavity as shown in Figure C.22. We label the new 
input column “scavity,” since it tells us the value of the cavity that corresponds to the group 
standard deviation column. We similarly define “stime” and “sposition.” 

With this preliminary work, we can now create the desired multivari charts for group stdev. 
 
 

 
 

 

Figure C.22 Defining a new input column for cavity. 
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C.6 EXPONENTIAL SMOOTHING 

When determining feasibility and deciding how to implement a feedback controller, we can 
fit an EWMA (exponential smoother) to an equally spaced time series of output values. See 
Chapter 18 and its supplement for details. 

As shown in Figure C.23, to fit an EWMA we use: 

Stat → Time Series → Single Exp Smoothing 

To illustrate, we use the fascia film build example explored in Chapter 18. The data 
are given in the file fascia film build baseline. A plot of the results of the EWMA smoothing 
is given in Figure C.24. 

 

 
 

 

Figure C.23   MINITAB Single Exponential Smoothing dialog box. 
 
 

We see that the time-to-time variation is captured well by the exponential smoothing. 
The smoothing constant (alpha) is 0.17, and the standard deviation of the smoothed 
series is given by the square root of the mean squared deviation (MSD). In the example, 
we have 3.83 = 1.96. 
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Figure C.24 EWMA smoothing of flow rate. 
 
 
 

We can also use MINITAB to determine how the adjusted series will look (assuming 
no adjustment errors) by calculating the output minus the target value and fitting the single 
exponential smoother to the translated output. Saving the fitted values (using the Storage 
button from Figure C.23), we can determine the adjusted series by subtracting the fitted 
values from the original film build values. 
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Appendix D 
Analysis of Variance (ANOVA) 

 
 
 
 
 
 

Analysis of variance (ANOVA) is the main formal numerical analysis tool associated with 
the search for a dominant cause of variation. While in most investigations we draw conclu- 
sions from graphical displays, we can use ANOVA to: 

• Assess a measurement system (Chapter 7). 

• Compare contributions of two families to output variation (Chapter 10). 

• Supplement the analysis of multivari investigations (Chapter 11). 

• Set a new goal for a reformulated problem (Chapter 14). 

ANOVA is applicable when the output is continuous and we have one or more discrete 
inputs. See Box et al. (1978) and Neter et al. (1996). Here we describe a few forms of 
ANOVA that we may need when applying the Statistical Engineering algorithm. 

ANOVA partitions the overall variation (as quantified by the total sum of squares) into 
components attributable to various inputs or families. We recommend using ANOVA as a 
supplement to graphical displays if the results are unclear. 

 
 

D.1 ONE-WAY ANOVA 

A one-way ANOVA is appropriate for a continuous output and a single discrete input. We 
use the MINITAB menu selection: 

 
Stat → ANOVA → One-way 

 
Consider the cylinder head scrap example discussed in Chapter 11. The data are given 

in the file cylinder head scrap multivari. Figure D.1 shows a plot of the side shift (the output) 
versus pattern (an input). With ANOVA, we quantify how much of the variation in the side 
shift can be explained by differences among the four mold patterns. 
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Figure D.1 Plot of side shift versus pattern. 
 
 

Using the dialog box shown in Figure D.2, we get the ANOVA results: 
 

One-way ANOVA: side shift versus pattern 
 

Analysis of Variance for side shift  
Source DF SS MS F P 
pattern 3 0.0146454 0.0048818 60.56 0.000 
Error 92 0.0074168 0.0000806   
Total 95 0.0220622   

 
 

 
 

 

Figure D.2 MINITAB One-way ANOVA dialog box. 
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Individual 95% CIs For Mean 
Based on Pooled StDev 

 

Level N Mean StDev        --------+---------+---------+--------- 
1 24 0.006833 0.011001(--*--) 
2 24 –2.8E–02 0.008371 (--*--) 
3 24 –1.1E–02 0.007812 (--*--) 
4 24 –1.4E–02 0.008387 (--*--) 

-------+---------+---------+--------- 
Pooled  StDev  =  0.008979 –0.024 –0.012 –0.000 

 
 

Pooled StDev provides an estimate of the variation within each pattern pooled 
across all patterns. That is, Pooled StDev provides an estimate of remaining output 
variation if we could eliminate all pattern-to-pattern differences in the average output. 
It estimates the variation attributable to all families other than the pattern-to-pattern 
family. 

We can also use a one-way ANOVA model to estimate the variation due to the meas- 
urement system. In Chapter 7, we described a measurement investigation for the camshaft 
journal diameter example. The data are given in the file camshaft journal diameter meas- 
urement. A one-way ANOVA by part is: 

 

One-way ANOVA: diameter versus part 
 

Analysis of Variance for diameter  
Source DF SS MS F P 
part 2 5008.014 2504.007 4383.00 0.000 
Error 51 29.136 0.571  
Total 53 5037.151   

    Individual 95% CIs For Mean 
    Based on Pooled StDev 
Level N Mean StDev -------+---------+---------+--------- 
1 18 –10.901 0.638 *) 
2 18 1.204 0.796 (* 
3 18 12.685 0.820 *) 

    -------+---------+---------+--------- 
Pooled StDev = 0.756  -7.0 0.0 7.0 

 
The measurement variation is estimated as 0.756, as given by Pooled StDev. This 

matches the result obtained in Chapter 7. 
In interpreting the ANOVA results, we ignore the p-value and confidence intervals (CIs), 

which are formal statistical procedures. See the supplement to Chapter 10 for our reasons. 
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D.2 ANOVA FOR TWO OR MORE INPUTS 

To fit an ANOVA model with two or more inputs we use the MINITAB menu selection: 

Stat → ANOVA → Balanced ANOVA 

To illustrate, we consider the casting thickness example previously discussed in the supple- 
ment to Chapter 11. The data are given in the file casting thickness multivari. 

The MINITAB Balanced ANOVA dialog box is shown in Figure D.3. The notation 
shown in Figure D.3, using the symbol “|” between inputs, requests a model with all possi- 
ble interaction terms. In the casting thickness example, this includes up to the three-way 
interaction involving all of time, cavity, and position. 

 
 

 
 

 

Figure D.3 MINITAB Balanced ANOVA dialog box. 
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The MINITAB results are: 
 

ANOVA:  thickness  versus  time,  cavity,  position 

Factor Type Levels Values 

 
 
 
 

Analysis of Variance for thickness 
 

Source DF SS MS F P 
time 11 9008.82 818.98 31.81 0.000 
cavity 5 16994.99 3399.00 132.00 0.000 
position 3 16697.24 5565.75 216.15 0.000 
time*cavity 55 1544.02 28.07 1.09 0.311 
time*position 33 7580.19 229.70 8.92 0.000 
cavity*position 15 5363.43 357.56 13.89 0.000 
time*cavity*position 165 1634.06 9.90 0.38 1.000 
Error 576 14832.00 25.75   
Total 863 73654.75    

 

To compare the relative sizes of the families, we look at the sum of squares (SS) column. 
We see large, roughly equal-sized effects due to position, cavity, and error. The error sum of 
squares includes the effect of the casting-to-casting family and all interactions between the 
casting-to-casting family and the other families. The calculated sum of squares tells us 
approximately how much we could expect to reduce the total sum of squares if we could elim- 
inate all variation due to the given family. It is complicated to translate these sums of squares 
into estimates for the standard deviation attributable to each family, but there is a rough cor- 
respondence. See the supplement to Chapter 11 for a complete discussion of the casting 
thickness example. 

If some data are lost, the assumption of balance (equal number of observations at each 
level of each input) is violated and the balanced ANOVA analysis is no longer appropriate. 
For unbalanced data, we use a general linear model: 

Stat → ANOVA → General Linear Model 

time fixed 12 1 2 3 4 5 6 7 
   8 9 10 11 12   
cavity fixed 6 1 2 3 4 5 6  
position fixed 4 1 2 3 4    

 



 

 



 

 

Appendix E 
Regression Models and Analysis 

 
 
 
 
 
 

With regression, we model the relationship between an output characteristic and one or more 
inputs. We find regression models useful for the following tasks: 

• Investigate variation transmission (chapters 10 and 11). 

• Investigate the relationship between the output and inputs (Chapter 12). 

• Set the goal for a reformulated problem (Chapter 14). 

• Find a prediction equation for a feedforward controller (Chapter 17). 

• Calibrate an adjuster (Chapter 18). 
There are many good references. See Box et al. (1978), Ryan (1989), and Montgomery 

et al. (2001). 
 
 
E.1 REGRESSION WITH A SINGLE INPUT 

A regression model relating the output to a single input is: 
 
 

output = b0 + b1input + residual 

 
The term b0 + b1input captures the effect of the input, and residual describes the variation in 
the output due to all other inputs. The regression analysis consists of estimating (also called 
fitting) the unknown constants b0 and b1 and the residual variation. 

In MINITAB, regression analysis is available using: 
 

Stat → Regression → Regression 
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Figure E.1   Regression dialog box. 
 
 

To illustrate, we use the truck alignment example introduced in Chapter 1 and discussed in 
Chapter 12. The data are given in the file truck pull input-output. Figure E.1 is the MINITAB 
Regression dialog box, used to fit a regression model with output right caster and input 
U-reading. 

The corresponding MINITAB regression results are: 

Regression Analysis: right caster versus U  reading 

The regression equation is 
right  caster  =  4.55  +  0.171  U  reading 

 

Predictor Coef SE Coef T P 
Constant 4.55157 0.03544 128.44 0.000 
U reading 0.17115 0.05309 3.22 0.003 

 

S  =  0.1926 R-Sq = 27.1% R-Sq(adj) = 24.5% 
 

Analysis of Variance 
 

Source DF SS MS F P 
Regression 1 0.38566 0.38566 10.39 0.003 
Residual Error 28 1.03893 0.03710   
Total 29 1.42459    

 

Unusual Observations  
Obs U readin right ca Fit SE Fit Residual St Resid 
22 2.09 5.1663 4.9089 0.1121 0.2574 1.64 X 

 
X denotes an observation whose X value gives it large influence. 
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Figure E.2 Scatter plot of right caster versus U-reading. 
 

The regression equation, right caster = 4.55 + 0.17*U-reading, provides a summary of 
the relationship between right caster and U-reading. In other words, the model suggest that 
a one-unit increase in U-reading would, on average, result in a 0.17-unit increase in right 
caster. However, the scatter plot in Figure E.2 suggests the regression model is not a very 
good summary. The value of S = 0.193 provides an estimate of the residual variation, the 
standard deviation in right caster if we could hold U-reading fixed. Holding the input U-reading 
fixed, we could reduce the variation in caster from around 0.22 (the baseline variation and, 
as it happens, also the caster variation in the regression data) to 0.19. We conclude that 
U-reading is not a dominant cause. 

In the MINITAB regression results, the list of unusual observations flags outliers, 
observations that are either not close to the fitted regression line or that have a large influence 
on the estimated regression parameters. In this case, the one observation in the upper right- 
hand corner of the plot in Figure E.2 has been flagged because it has a large influence on the 
slope of the fitted line. 

 
 

Fitted Line Plot 

To superimpose the fitted regression equation on a scatter plot of the output versus the input, 
we use: 

 
Stat → Regression → Fitted Line Plot 

 
We illustrate using the crossbar dimension example covered in Chapter 12. The data 

from the investigation are given in the file crossbar dimension input-output. The left 
panel in Figure E.3 shows the resulting graph and numerical regression model summary 
when fitting a model for dimension as a linear function of barrel temperature. We see 
that the linear model fits quite well and (since the dimension variation in the regression 
data matches the baseline) that barrel temperature is a dominant cause. However, we 
also notice that the relationship between dimension and barrel temperature seems to be 
nonlinear. 
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Regression plot 
dimension = –23.8980 + 0.322935 barrel temp 

S = 0.254387    R–Sq = 78.9%     R–Sq(adj) = 78.3% 
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Figure E.3 Regression plots with fitted lines. 
 
 

 
 

 

Figure E.4 Fitted Line Plot dialog box. 
 
 

Using the fitted line plot dialog box as shown in Figure E.4, where we request a quad- 
ratic model, we get the plot given in the right panel of Figure E.3. In this way, we can 
explore the relationship between the input and output. Using the Options button we can also 
request a log transformation of the input, output, or both. 

 
Best Subsets Regression 

To quickly fit many possible models, we use automatic model building. See MINITAB help 
or Neter et al. (1996) for more details. 

In investigations where many inputs are measured, the Best Subsets Regression dialog 
box, as shown in Figure E.5, can quickly summarize the results from fitting regression 
models with all possible single inputs. 

Best subsets regression is available using: 

Stat → Regression → Best Subsets 
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Figure E.5 Best Subsets Regression dialog box. 
 
 

We use the best subsets regression options, as shown in the right panel of Figure E.5, 
to request a minimum and maximum of one free predictor (that is, input) and to display five 
models of each size to print. To illustrate, we use the brake rotor balance example discussed 
in one of the case studies. In a group comparison investigation, 26 foundry-related inputs 
were measured on 30 balance rejects and 30 well-balanced brake rotors. The data are given 
in the file brake rotor balance comparison. Previous analysis for this data was based on the 
binary output: balanced or not balanced. However, since the balance weight required for 
each rotor was also recorded, we can also analyze these data using regression models. Filling 
in the Best Subsets Regression dialog box as in Figure E.5 gives the following (edited) 
MINITAB results: 

 
Best Subsets Regression: balance versus v1, v2, ... 

 
Response is balance 

 
o  i i  i  o  o h  h  h  h  h  
u  n  o  o  o  n  n  u  u  h  h  h  h  o  o  o  o  o  
t  n  v  f  f  n  n  t  t  e  e  e  e  l  l  l  l  l  
e  e  e  f  f  e  e  e  e  i  i  i  i  e  e  e  e  e  
r r r s s r r r r g g g g 

a  e  e h  h  h  h  s  s  s  s  s  
v  v  v  v  v  v  v  v  t  t  l  t  t  d  d  d  d  t  t  t  t  i  i  i  i  i   

R-Sq R-Sq(adj) C-p S 1  2  3  4  5  6  7  8  h  h  l  1  2  i  i  i  i  1  2  3  4  z  z  z  z  z   
 

62.6 61.9 2.4 0.30960    X  
48.2 47.3 24.9 0.36435  X   
44.1 43.1 31.3 0.37863     X 
34.7 33.6 45.9 0.40900   X   
5.5 3.9 91.5 0.49213 X     
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The results summarize the five best regression models that involve only a single input. 

The models are ranked by largest R-Sq value (or equivalently, since all models have the 
same number of parameters, by the smallest value for S). Overall thickness variation is the 
single input that explains the most variation in the output. We would then look at the scatter 
plots that correspond to the best inputs. To determine the regression equation for any partic- 
ular input, we need to fit the individual regression model. 

Using the best subsets regression routine, we can avoid examining all scatter plots (and 
fitting all the corresponding regression models) involving the output and all possible single 
inputs. There are 26 such plots (models) in this case. We do not recommend the use of the 
best subsets regression routine unless the number of inputs is large. Looking at the individual 
plots is preferred because the regression summary can miss patterns like nonlinear relation- 
ships and the effect of outliers. 

 
 

E.2 REGRESSION WITH MULTIPLE INPUTS 

Fitting regression models with more than one input can be useful: 
• As a screening tool to analyze the results of investigations to look at the 

relationship between inputs and the output (Chapter 12) 

• For fitting a prediction equation for a feedforward controller (Chapter 17) 

In cases where we have many input characteristics the regression model is extended to 
 

output = b0 + b1input1 +...+ bkinputk + residual 

Regression analysis with multiple inputs is available using: 
 

Stat → Regression → Regression 
 

To illustrate, consider the truck pull feedforward investigation discussed in Chapter 17. The 
goal of the investigation was to find a prediction equation for caster that could be used to build 
a feedforward controller. The data are given in the file truck pull feedforward. We fit a regres- 
sion model to describe the relationship between the output left caster and the inputs given by 
the truck frame geometry using the Regression dialog box, as shown in Figure E.6. 
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Figure E.6 Regression dialog box showing multiple inputs. 
 
 

The MINITAB results are: 
 

The regression equation is 
left caster =    –18.6 +  1.24 left front +  0.677  right front  + 0.140  left rear  + 
1.156 right rear 

 

Predictor Coef SE Coef T P 
Constant –18.6097 0.6100 –30.51 0.000 
left front 1.24243 0.04018 30.92 0.000 
right front 0.67669 0.03585 18.88 0.000 
left rear 0.13953 0.02763 5.05 0.000 
right rear 0.15624 0.04162 3.75 0.000 

 

S  =  0.1760 R-Sq = 96.4% R-Sq(adj) = 96.2% 
 

Analysis of Variance 
 

Source DF SS MS F P 
Regression 4 77.827 19.457 627.82 0.000 
Residual Error 95 2.944 0.031   
Total 99 80.771    

 
In this example, the regression equation summarizes the relationship between the left 

caster and the four truck frame geometry inputs. The value of S in the regression results gives 
an estimate of the remaining variation in left caster (quantified in terms of standard deviation) 
if we hold all of the four truck frame inputs fixed or if we could perfectly compensate for their 
effects using a feedforward controller. 



CD–346 Appendices: Using MINITAB 
 

 
For regression models with many inputs, we need to use caution when trying to interpret 

the estimated regression parameters (given by the “Coef” column in the MINITAB regres- 
sion results). We may interpret the parameter estimate corresponding to the input “left front” 
(1.24) as the expected change in the left caster for a unit change in left caster if we hold all 
the other inputs fixed. If the inputs used in the regression analysis do not vary independently, 
it may make no physical sense to think of changing one input while holding all the others 
fixed. In the truck pull example, where we want a prediction equation, we do not interpret 
the individual regression parameter estimates, so this is not a major concern. 



 

 

Appendix F 
Planning and Analysis of 

Designed Experiments 
 
 
 
Designed experiments are used in the Statistical Engineering algorithm to: 

• Verify a dominant cause (Chapter 13). 

• Find adjusters that move the process center (Chapter 15). 

• Find candidate settings that desensitize the process to variation in a dominant 
cause (Chapter 16). 

• Find candidate settings that make the process robust (Chapter 19). 

There is an extensive literature on designed experiments. See, for example, Box et al. 
(1978) and Montgomery (2001). In this appendix we show how to set up and analyze the 
types of experiments used in this book. 

 
 

F.1 SETTING UP THE EXPERIMENTAL DESIGN 

In this section, we consider the design of factorial experiments with two or more levels for 
each input. In MINITAB, to create a factorial design we use the menu selection: 

 
Stat → DOE → Factorial → Create Factorial Design 

 
To illustrate, we use the brake rotor balance verification experiment discussed in Chapter 13 
and in one of the case studies. In the experiment, two levels for each of the three suspects— 
tooling, position, and thickness variation—were chosen to capture their full range of vari- 
ation. The team decided to make eight rotors for each of the eight treatments. That is, there 
were eight runs with eight repeats. No treatment was replicated. Figure F.1 shows how the 
experimental plan was entered into MINITAB. In MINITAB, the inputs that are changed in 
an experiment are called factors. 
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Figure F.1 Create Factorial Design dialog box. 
 

For the choices shown in Figure F.1, MINITAB gives the summary: 
 

Factorial Design 
 

Full Factorial Design 
 

Factors: 3 Base Design: 3, 8 
Runs: 8 Replicates:  1 
Blocks: none Center pts (total):  0 

 

All terms are free from aliasing 
 

The plan and the collected data are given in the file brake rotor balance verification. The 
worksheet with the data is shown in Figure F.2. Note that MINITAB has created four spe- 
cial columns in the worksheet: StdOrder, RunOrder, CenterPt, and Blocks. These columns 
are necessary to use any of the MINITAB subcommands under Stat � DOE � Factorial 
once the design has been created. 

In Figure F.2, the columns r1, r2, ..., r8 give the balance weights for the eight rotors 
produced for each treatment. Much of the analysis in the brake rotor example uses the per- 
formance measure average weight. The average weight for each run is calculated as 
described in Appendix A. For experiments with a number of repeats for each run, such as 
the brake rotor balance verification experiment, we need to store the data in a different way 
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Figure F.2   Experimental design setup in MINITAB worksheet. 
 
 

to plot the output by treatment. Putting all the output values (that is, repeats) in a single col- 
umn (use the stack columns command as described in Section A.5), we get the worksheet 
in Figure A.9. 

 
 

Custom Designs 

In some cases, the experiment we wish to conduct is not a standard two-level factorial 
design, or we already have the experimental data stored. In such cases, we can set up the 
experiment in MINITAB using: 

 
Stat → DOE → Factorial → Define Custom Factorial Design 

For instance, in the oil pan scrap example discussed in Chapter 16, the experiment had four 
inputs, with one at three levels and the other three at two levels each. We enter the design 
as in Figure F.3. For two-level factorial designs, we need to also use the Low/High dialog 
box to tell MINITAB what codes correspond to the high and low level of each input. 

Entering the design as shown in Figure F.3 adds the columns StdOrder, RunOrder, 
CenterPt, and Blocks to the existing data as shown in Figure F.4. The data are available in 
the file oil pan scrap desensitization. 

 
 

  
 

 

Figure F.3 Define Custom Factorial Design dialog box. 
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Figure F.4 Results from custom design setup. 
 

For a proper interpretation of this experiment, recall that this is a desensitization exper- 
iment. Three of the inputs—namely, lubricant type, die temperature, and binder force—are 
candidates, while lube amount is the dominant cause. As shown in Figure F.4, we number 
the treatments based on combinations of the candidates. 

 
Fractional Factorial Designs 

Designs for fractional factorial experiments (where only a subset of all possible treatment 
combinations are used—see the supplement to Chapter 15) are set up in MINITAB with the 
same command as full factorial designs, namely, 

Stat → DOE → Factorial → Create Factorial Design 

To plan a fractional factorial experiment, useful information about all possible 2k factorial designs 
is given in MINITAB using the Display Available Designs button, as shown in Figure F.5. 

To illustrate a fractional factorial experiment, we use the paint film build example dis- 
cussed in the Chapter 19 exercises. The data are given in the file paint film build robustness. 
The goal was to explore the effect of five inputs on the variation in film build (as measured by 
the log standard deviation) over five consecutive panels. There were resources for 16 runs, a 
half fraction. We choose the design in MINITAB as shown in Figure F.6. We also used the 
Factors button to enter input names and levels. 

Figure F.7 gives the resulting worksheet after adding appropriate labels, entering the 
experimental results, and calculating some performance measures. Performance measures 
were determined using the calculator function in MINITAB (see Appendix A). 
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Figure F.5 Two-level factorial experiments available in MINITAB. 
 
 

  
 

 

Figure F.6 Design setup for the paint film build robustness experiment. 
 
 

 
 
 

 

Figure F.7 Fractional factorial design and output for paint film build experiment. 
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F.2 ANALYSIS OF THE EXPERIMENTAL RESULTS 

To start the analysis, we plot the output by treatment number (see Appendix C). For the paint 
film build robustness experiment discussed in Section F.1, we get Figure F.8. We look for 
outliers and differences in the average or variation across the treatments. In some cases, the 
output by treatment plot is sufficient to draw appropriate conclusions. Note that if the 
multiple observations for each treatment come from repeats in the experiment (rather than 
replicates), the variation within each treatment likely underestimates the long-term varia- 
tion for that treatment. 

To analyze the experimental results more fully we use: 
 

Stat → DOE → Factorial → Analyze Factorial Design 
 

The resulting dialog box is given in Figure F.9. We specify the output (response) to 
analyze and choose the form of the model using the Terms button. 

In this example, as shown in Figure F.9, we choose the performance measure “log(s)” 
as the output (upper left panel of Figure F.9) and select a model with all possible main 
effects and interactions (upper right panel of Figure F.9). Here we include interactions up 
to fifth order, since there are five inputs in the experiment. 

From the Graphs dialog box (lower left panel in Figure F.9) we select a Pareto effects 
plot. In some cases, we may also want to have a numerical summary of some of the impor- 
tant effects. We can use the Results dialog box (lower right panel of Figure F.9) to request 
a display of the estimated average output for different levels of the input or inputs. 
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Figure F.8 Film build by treatment. 
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Figure F.9 MINITAB Analyze Factorial Design dialog box. 
 
 

For the paint film build example, the resulting Pareto effects plot, which ranks the 
unsigned effects, is given in Figure F.10. In this plot any large effects (relative to the other 
effects) should be clearly evident. We see that the effects due to zone X voltage, conductivity, 
and the interaction between these two candidates are large. 
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Figure F.10 Pareto plot of the effects for paint film build robustness experiment. 
 
 
 

To make further sense of these experimental results, we consider factorial plots obtained 
using the MINITAB menu selection: 

Stat → DOE → Factorial → Factorial Plots 

We can request main effects, two-way interaction, and three-way interaction plots. 
Figure F.11 shows how we request main effects plots based on the performance meas- 
ure log(s). 

In the paint film build example, choosing main effects and interaction plots with all five 
candidates, we get the plots given in figures F.12 and F.13. 

 
 
 

 
 

 
 

Figure F.11 Factorial Plots dialog box. 
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Figure F.12 Main effects plot (in terms of log(s)) for film build robustness experiment. 
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Figure F.13 Interactions plot (in terms of log(s)) for film build robustness experiment. 
 

Note that in the paint film build robustness experiment, the design was resolution V; 
thus, the main effects and interactions can be estimated separately. If the design is resolution 
IV, some two-way interactions are aliased with other two-way interactions. In particular, 
for the standard half fraction resolution IV designs, half the individual interaction plots 
show the same information. Similarly, in resolution III design, the main effects are con- 
founded with interactions. With resolution III designs, we need only consider the main 
effects plots, since the interaction plots will not provide any new information. 
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Figure F.14 Main effects and two-way interaction plots showing individual observations. 
 
 

From figures F.12 and F.13, we conclude there are large effects due to conductivity, zone 
X voltage, and the interactions between conductivity and zone X voltage and between conduc- 
tivity and temperature. Recall that smaller log(s) is better. Since there are large interactions, 
we draw conclusions based on the interaction plot. Figure F.13 suggests high zone X voltage, 
high conductivity, and low temperature are best. We are fortunate that high conductivity is 
best in both large interactions. 

Note that the main effects and interaction effects plots produced by MINITAB show 
only averages. We can use box plots (showing individual output values) and multivari plots 
(see Appendix C) to create alternative displays of main effects and two-way interactions that 
show individual observations, as illustrated in Figure F.14. 
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	Exercise Solutions
	CHAPTER 1—NO EXERCISES CHAPTER 2
	2.1 The word variation is used in other contexts to describe a difference between a realized and target value such as in budget variation. How does this use com- pare to variation as discussed in Chapter 2?
	2.2 We have heard the following comment many times from manufacturing engi- neers: “The cause of the variation is the product design—what can you expect me to do?” Discuss the comment in light of the definition of cause in Section 2.2.
	2.3 Profile A is a measure of deviation of the actual from the ideal shape of a camshaft lobe over one region (A) of the lobe. The target value is zero and the upper specification limit is 250 microns. Use the data in the file camshaft lobe runout baselineR
	2.4 Construct histograms and run charts for output 1 and output 2 given in the data file chapter 2 exercise 4. Find the average and standard deviation for each out- put. Assume the target value and upper specification limit for these lower-is- better outpuU
	2.5 You may convince yourself that the formulas for combining means and stan- dard deviations given in Section 2.4 are true with the following numerical demonstration you can conduct in MINITAB. Generate two columns of 100 val- ues sampled from some model V
	2.6 At a project review, the team presented the following summary of their investi- gation based on standard deviations.
	a. The reviewing manager questioned the numbers in the second column of the table because they did not add to 100. Is there an error? Explain.
	2.7 In Chapter 1, we discussed a project to reduce variation in pull, an alignment characteristic of light trucks. Recall that

	CHAPTER 3
	3.1 For a problem of interest to you speculate about the likely costs and feasibility of implementing each of the possible variation reduction approaches.
	3.2 Variation in the location of a drilled hole in a machined casting can cause poor fits when the part is bolted to an engine. To reduce this variation, an engineer considers a variety of possible approaches.

	CHAPTER 4—NO EXERCISES CHAPTER 5
	5.1 Briefly discuss the advantages and disadvantages of the following—be sure to think of potential errors as described within the QPDAC framework.
	5.2 In the camshaft lobe BC runout problem described in Chapter 1, the team selected 50 parts (10 per day over 5 days) and measured the BC runout for each of the 12 lobes on each camshaft to quantify the baseline. The 600 runout measurements are stored in Y
	5.3 To assess a measurement system used to check the diameter of an engine bore, an investigator plans to repeatedly measure the same four (of the eight) bores on five blocks sampled from a shift of production.
	5.4 You are a manager with the responsibility to decide if you should change the supplier for a tooling insert. You receive a report from your process engineer who has conducted an investigation into a new insert. He gives you the follow- ing verbal report[

	CHAPTER 6
	6.1 In Chapter 1, we described a problem in terms of the lobe geometry of camshafts. The data are given in the file camshaft lobe runout baseline. Quan- tify the problem baseline for the following output.
	6.2 Many programs such as Excel cannot easily handle missing observations. MINITAB is an exception. Missing values are often stored using a special numerical code (–99 is common). These special codes can result in much confu- sion and lead to incorrect con]
	6.3 The baseline investigation for the V6 piston diameter example was described in Chapter 5. The data are given in the file V6 piston diameter baseline. Suppose the data were collected so that all the pistons from a given hour were collected at the start ^
	6.4 Based on customer complaints concerning installation difficulties, a team investigated variation of a key fascia dimension. To establish a baseline, they measured the dimension on 147 fascias sampled from one month’s production. The data are given in t^

	CHAPTER 7
	7.1 In a process improvement problem to improve the quality of a roof panel, the measurement system (specially designed for the project) counted the number of updings on each panel. To assess the measurement system, the number of updings on 20 bad panels a_
	e. This investigation was conducted over one hour. What are the advantages and disadvantages of spreading the two measurements on each panel over two days?
	7.2 To monitor the process that produces engine blocks, piston bore diameters are measured on every block because they are key characteristics. Each engine block has eight bores. The bore diameter is measured at three different heights in each bore (bottom`
	a. Determine the discrimination ratio. Is the measurement system adequate?
	7.3 The following MINITAB results and graphs arise from a measurement system investigation in which two different operators measured five parts three times each. The five parts were selected with initial measured values spread out over the full extent of vb
	a. What do the given results tell us about the bias and variation of the measure-
	7.4 To assess the variation in the system designed to measure camshaft lobe geom- etry over time, the same camshaft was measured daily for a month. At each measurement, a number of characteristics (for example, angle error, BC runout, taper, and so on) on d
	7.5 In a process that produced V8 pistons, problems occurred when pistons in inventory were remeasured (for an audit) and found to be out of specification. Since the process used 100% final inspection, this could only occur if there was a problem with the e
	7.6 Consider the brake rotor balance example described in the case studies. In the measurement investigation, three rotors were specially selected: one well bal- anced, another poorly balanced, and the final rotor requiring weight near the specification lif
	7.7 If necessary, measurement variation can be reduced by applying the Statistical Engineering algorithm. Describe how each of the seven variation reduction approaches might be used to improve a measurement system.
	Desensitization
	Feedforward Control
	Feedback Control
	Robustness
	Inspection
	Move the Process Center

	CHAPTER 8—NO EXERCISES CHAPTER 9
	9.1 Think of a process and problem you know well. Define various families of causes.
	9.2 The following plot shows the results of a process investigation aimed at finding a dominant cause. The dashed lines give the full extent of variation in the out- put as defined by the problem baseline. Can the input be ruled out as a domi- nant cause oi

	CHAPTER 10
	10.1 The flow chart that follows shows the major steps in an assembly process to set the wheel alignment of a truck.
	The characteristic of interest is right camber with specification 0.5 0.5 . Camber is measured on every truck by one of the four gages (aligners). The process performance for right camber is shown as follows based on about 6200 consecutive trucks.
	a. Based on this histogram, can the measurement system be eliminated as a dominant cause of the camber variation?
	f. The following plot shows the camber variation for the first nine trucks in the data set. What families can be ruled out as the home of a dominant cause using these data?
	g. In a special study, one key characteristic of the lower control arm was meas- ured for 30 trucks. The other components were specially selected to ensure that they were well within specification. Based on the plot that follows, is the lower control arm ck
	10.2 Consider again the camshaft lobe runout problem introduced in Chapter 1. Each camshaft has 12 lobes with a number of characteristics of interest. In a search for a dominant cause, we may compare the lobe-to-lobe and camshaft-to- camshaft families of vl
	10.3 In the manufacture of an injection molded part, a key crossbar dimension exhibited excess variation. The problem baseline estimated the standard devia- tion of the crossbar dimension as 0.46 with full extent of variation –0.3 to 2.0. The goal was to rn
	10.4 As described in Chapter 7, in a process that placed labels on bottles, the team searched for an acceptable measurement system. The file label height measure- ment contains the data from an investigation in which three operators using a hand feeler gagn
	We have stdev(due to measurement) = 0.00886, and thus
	and an estimated measurement discrimination ratio of 2.3. The team decided to improve the measurement system before addressing the original label height variation problem. Reanalyze the measurement investigation results to eliminate families of possib...
	10.5 A process improvement problem was initiated to reduce the number of updings on a roof panel. Updings are small outward dents in the metal surface caused by contamination. The team discovered that the dominant cause was contamina- tion before the formip
	10.6 In the engine block porosity example discussed in Chapter 10, the team found the occurrence of high porosity coincided with production directly after breaks. To explore this clue further, they conducted another investigation in which the porosity of 5p
	10.7 High silicon concentration in cast iron is undesirable as it was found be a dom- inant cause of fluidity variation. However, measuring the silicon level can be difficult. The measurement process consisted of sampling the molten iron by pouring sample q

	CHAPTER 11
	11.1 In a multivari investigation, two consecutive pieces are selected from each of three pallets once per hour. Sketch the appearance of the multivari chart that shows all three families at the same time if a dominant cause lies in the follow- ing family.r
	11.2 In the engine block leakers example, introduced in Chapter 1, the baseline defect rate was 2–3%. The team conducted a multivari investigation where three consecutive blocks were taken at twelve different times throughout the day. The investigation cons
	11.3 At an intermediate operation the team planned a multivari investigation in which three consecutive parts were taken from each of two machines operating in parallel once every hour for two days. Consider two different processes. In the first process, tt
	11.4 In a multivari investigation, the diameter of a transmission shaft was measured at four positions (left and right side at two different orientations) for three con- secutively sampled shafts each hour. The data are available in the file transmission st
	a. What conclusion can you draw from the multivari charts that follow?
	b. Using the data assess whether the dominant cause acts in the shaft-to-shaft family.
	11.5 In the production of engine blocks, bore diameters are key characteristics. Bore diameter is measured at three heights and two orientations in each of the eight bores in each block. The team used Statistical Engineering to address a problem
	11.6 In the paint film build example described in Chapter 3, a baseline investigation found the standard deviation was 0.315, with an average of 16.2 thousandths of an inch. The full extent of variation was 15.2 to 18.5. To search for a dominant cause, thew
	11.7 A team wanted to reduce the number of updings on a roof panel. Updings are small outward dents in the metal surface caused by contamination. A baseline
	11.8 The baseline investigation for the sand core example discussed in Chapter 1 involved taking five samples over a single day of five consecutive shots of four

	CHAPTER 12
	12.1 Vehicle plant and warranty complaints for loose spark plug wires at the spark plug end prompted an improvement project. As a result of several investiga- tions, the family of causes related to push forces on the wires was the home of a dominant cause.{
	12.2 A sunroof installation process suffered from a 90% rework rate due to a lack of flushness. Flushness is defined as the difference in height between the sunroof seal and the metal roof. It is measured using digital calipers at six points (three at the |
	12.3 An example related to sand defects in manifolds was discussed in Chapter 12. Before the problem mentioned in Chapter 12, the team carefully monitored the process for a shift. Each of 970 manifolds was classified as either scrap (due to sand issues) or}

	CHAPTER 13
	13.1 In a verification experiment there were two suspects at two levels. The low and high levels for each suspect were chosen based on the extremes from historical variation. The results of the first three runs of the experiment are shown in the following ~
	13.2 In the engine block porosity example discussed in the text and exercises of Chapter 10, a dominant cause of porosity acted immediately following sched- uled breaks in production. Based on this evidence, the team identified two sus- pects: iron pouring~
	c. Is it a problem that in this verification experiment we have not observed the behavior of the process before lunch breaks?
	13.3 The manufacture of a tube assembly required a protective nylon sleeve to be positioned and bonded to a tube. The bond strength of this tube assembly was occasionally tested using a destructive test where the sleeve was subject to increased tensile she•
	13.4 Steering knuckles are produced in a gray iron casting process. Around 2% of castings were scrapped because the percent nodularity was too small. In this example the team did not clearly establish a problem baseline. The team thought the cause must be •

	CHAPTER 14
	14.1 In the camshaft lobe runout example, the team searched for a dominant cause of variation. As discussed in Chapter 10, they conducted a variation transmis- sion investigation where runout was measured directly before heat treatment and after the final •
	In this example, the team decided not to reformulate the problem but to look for a more specific cause.
	14.2 In Chapter 11, the team found that the piston diameter directly after operation 270 was a dominant cause of final V6 piston diameter variation. The relation- ship is illustrated in the scatter plot that follows. The data are given in the file V6 pisto•
	The team decided to look further for a more specific dominant cause. Sup- pose, however, they had wanted to reformulate the problem in terms of the oper- ation 270 diameter. Determine an appropriate goal for the reformulated problem. Recall that the g...

	CHAPTER 15
	15.1 Based on customer complaints about assembly difficulty, a team investigated fascia dimension variation. A baseline investigation found that some fascias were too large. The team felt that reducing the average size of the fascias could
	15.2 An experiment was carried out to investigate four candidates to search for an adjuster of the formability safety margin of galvanized sheet metal trunk lids. The purpose was to increase the average safety margin from the baseline value
	15.3 In the sand core strength example introduced in Chapter 1, too many cores were breaking during handling. A suggested solution was to increase the core strength (and thereby reduce core breakage) by increasing the resin concentra- tion. It was known th•

	CHAPTER 16
	16.1 In a sonic welding operation, problems arose due to poor weld strength, meas- ured as pull-off force. The goal was to reduce the variation and increase the average pull-off force. The second goal is not addressed here. From the baseline, the full exte•
	16.2 In the crossbar dimension example discussed in Chapter 12, the team found that the dominant cause of dimension variation was barrel temperature. Because it was hard to control in regular operation, the team decided to try to make the process less sens•
	16.3 In Chapter 16, we describe a desensitization experiment for the refrigerator frost buildup example where each refrigerator is subjected to only two extreme levels of environmental causes. Here we consider a hypothetical experiment in which each refrig•
	The experimental plan had 64 runs. To conduct the experiment, all eight refrigerators were simultaneously placed in a test chamber and exposed to each cause combination in the given order. The cooling plate temperatures are given in the file refrigera...
	16.4 There were excessive failures in the accelerated life testing of electric motors. Using a group comparison investigation, the team found that unevenness in the commutator shaft surface was a dominant cause of these failures. The team next reformulated•

	CHAPTER 17
	17.1 In an investigation, 100 trucks were selected from regular production over two weeks. The frame geometry as given by four summaries (left and right front, left and right rear) and the alignment outputs left and right camber and caster were determined •
	17.2 Engine assembly problems occurred due to a poor fit between the pistons and the engine bore. The dominant cause of poor fit was found to be variation in the clearance, the difference between the (minimum) bore diameter and the (maxi- mum) piston diame•
	17.3 In the V6 piston diameter example discussed in Chapter 11, the team found that piston diameter after Operation 270 was a dominant cause of the final diameter. The data are given in the file V6 piston diameter variation transmission. This suggested tha•

	CHAPTER 18
	18.1 The bias of the system used to measure camshaft journal diameters tended to increase over time. The cause of this increase was not determined. Instead, the team introduced a feedback controller. At the start of each shift, a master journal with known •
	18.2 In a machining process, the dominant cause of dimension variation acted in the setup family. That is, the dimension variation within a particular setup was small relative to the variation from one setup to the next. The existing control plan called fo•
	18.3 In a machining process, there was excess variation in the diameter of a precision ground shaft. The shaft diameter was measured for all shafts using a complex automated gage (that also measured other outputs). Upon investigation, the team discovered t•

	CHAPTER 19
	19.1 In the paint film build example introduced in Chapter 3, the baseline standard deviation in film build (paint thickness) was 0.67 thousandths of an inch. With this variation, to ensure a minimum film build of 15-thousandths of an inch, the process was¡
	19.2 In a trim plant, customer complaints about seat appearance prompted manage- ment to assign a team the task of reducing shirring variation. The team pro- ceeded without using Statistical Engineering and made a number of mistakes. Seat cover shirring wa§
	19.3 Torsional rigidity of the weather stripping was the dominant cause of door assembly problems. Management set a goal of reducing standard deviation in torsional rigidity to 0.3. A baseline investigation found the variation in torsional rigidity was rou«

	CHAPTER 20—NO EXERCISES CHAPTER 21
	21.1 Discuss whether lessons learned are properly maintained in corporate memory in your organization. What could be done to improve the situation?
	21.2 In the paint film build example described in Chapter 19, the team found new process settings that resulted in reduced car-to-car variation in film build. To validate the proposed solution, 80 cars were painted over one day with the set- tings given in¯
	21.3 In the truck pull example described in Chapter 17 and Exercise 17.1, a feed- forward controller was implemented to compensate for the effect of truck- frame geometry on pull. After the feedforward system had been operating successfully for some time, ±
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